В чем измеряются обороты двигателя?

В этой статье:

Как определить обороты электродвигателя? Инструкция, формулы и таблицы расчета. Определяем мощность и частоту оборотов в домашних условиях

В чем измеряются обороты двигателя?

При покупке электродвигателя с рук рассчитывать на наличие технической документации к нему не приходится. Тогда встает вопрос о том, как узнать количество оборотов приобретаемого устройства. Можно довериться словам продавца, однако добросовестность не всегда является их отличительной чертой.

Тогда возникает проблема с определением числа оборотов. Решить ее можно, зная некоторые тонкости устройства мотора. Об этом и пойдет речь дальше.

Определяем обороты

Существует несколько способов измерения оборотов электродвигателя. Самый надежный заключается в использовании тахометра – устройства, предназначенного именно для этих целей. Однако такой прибор есть не у каждого человека, тем более, если он не занимается электрическими моторами профессионально. Поэтому существует несколько иных вариантов, позволяющих справиться с задачей «на глаз».

Первый подразумевает снятие одной из крышек двигателя с целью обнаружения катушки обмотки. Последних может быть несколько. Выбирается та, которая более доступна и расположена в зоне видимости. Главное, во время работы не допустить нарушения целостности устройства.

Когда катушка открылась взору, необходимо ее внимательно осмотреть и постараться сравнить размер с кольцом статора. Последний является неподвижным элементом электродвигателя, а ротор, находясь внутри него, осуществляет вращение.

Когда кольцо наполовину закрыто катушкой, число оборотов за минуту достигает 3000. Если закрывается третья часть кольца – число оборотов составляет примерно 1500. При четверти – число оборотов равно 1000.

Второй способ связан с обмотками внутри статора. Считается количество пазов, которые занимает одна секция какой-либо катушки. Пазы расположены на сердечнике, их число свидетельствует о количестве пар полюсов. 3000 оборотов в минуту будет при наличии двух пар полюсов, при четырех – 1500 оборотов, при шести – 1000.

Ответом на вопрос о том, от чего зависит количество оборотов электродвигателя, будет утверждение: от числа пар полюсов, причем это обратно пропорциональная зависимость.

На корпусе любого заводского двигателя имеется металлическая бирка, на которой указаны все характеристики. На практике такая бирка может отсутствовать или стереться, что немного усложняет задачу определения числа оборотов.

Корректируем обороты

Работа с разнообразным электрическим инструментом и оборудованием в быту или на производстве непременно ставит вопрос о том, как регулировать обороты электродвигателя.  Например, становится необходимым изменить скорость передвижения деталей в станке или по конвейеру, скорректировать производительность насосов, уменьшить или увеличить расход воздуха в вентиляционных системах.

Осуществлять указанные процедуры за счет понижения напряжения практически бессмысленно, обороты будут резко падать, существенно снизится мощность устройства. Поэтому используются специальные устройства, позволяющие корректировать обороты двигателя. Рассмотрим их более подробно.

Частотные преобразователи выступают в качестве надежных устройств, способных кардинальным образом менять частоту тока и форму сигнала. Их основу составляют полупроводниковые триоды (транзисторы) высокой мощности и модулятор импульсов.

Микроконтроллер управляет всем процессом работы преобразователя. Благодаря такому подходу появляется возможность добиться плавного повышения оборотов двигателя, что крайне важно в механизмах с большой нагрузкой. Медленный разгон снижает нагрузки, положительно сказываясь на сроке службы производственного и бытового оборудования.

Все преобразователи оснащаются защитой, имеющей несколько степеней.  Часть моделей работает за счет однофазного напряжения в 220 В. Возникает вопрос, можно ли сделать так, чтобы трехфазный мотор вращался благодаря одной фазе? Ответ окажется положительным при соблюдении одного условия.

При подаче однофазного напряжения на обмотку требуется осуществить «толчок» ротора, поскольку сам он не сдвинется с места. Для этого нужен пусковой конденсатор. После начала вращения двигателя оставшиеся обмотки будут давать недостающее напряжение.

Существенным минусом такой схемы считается сильный перекос фаз. Однако он легко компенсируется включением в схему автотрансформатора. В целом, это довольно сложная схема. Преимущество же частотного преобразователя заключается в возможности подключения моторов асинхронного типа без применения сложных схем.

Что дает преобразователь?

Необходимость использования регулятора оборотов электродвигателя в случае асинхронных моделей состоит в следующем:

Достигается значительная экономия электрической энергии. Поскольку не всякое оборудование требует высоких скоростей вращения моторного вала, ее имеет смысл снизить на четверть.

Обеспечивается надежная защита всех механизмов. Преобразователь частоты позволяет контролировать не только температуру, но и давление и прочие параметры системы. Этот факт особенно важен, если при помощи двигателя приводится в действие насос.

Датчик давления устанавливается в емкости, посылает сигнал при достижении должного уровня, благодаря чему мотор останавливается.

Совершается плавный пуск. Благодаря регулятору снимается необходимость использования дополнительных электронных устройств. Частотный преобразователь легко настроить и получить желаемый эффект.

Снижаются расходы на техническое обслуживание, поскольку регулятор сводит к минимуму риски поломки привода и других механизмов.

Таким образом электродвигатели с регулятором оборотов оказываются надежными устройствами с широкой сферой применения.

Важно помнить, что эксплуатация любого оборудования на основе электрического мотора только тогда окажется правильной и безопасной, когда параметр частоты вращения будет адекватен условиям использования.

Фото оборотов электродвигателя

Источник: https://electrikmaster.ru/oboroty-elektrodvigatelya/

Мощность двигателя — как работает и что это такое,на что влияет

В чем измеряются обороты двигателя?

Изобретенный более 100 лет назад поршневой двигатель внутреннего сгорания (ДВС), на сегодняшний день все еще является самым распространенным в автомобилестроении. При выборе модели двигателя своего будущего автомобиля покупатель может предварительно ознакомиться с его основными характеристиками. В этой статье мы подробно расскажем об основных показателях двигателей внутреннего сгорания, что они собой представляют и как влияют на работу.

Важнейшими характеристиками двигателя являются его мощность, крутящий момент и обороты, при которых эта мощность и крутящий момент достигаются.

  • Роль мощности и крутящего момента двигателя
    • Вопрос — ответ
    • Объем двигателя — как работает и что это такое,на что влияет.
    • Система зажигания двигателя: описание,датчик распределитель,фото,видео.
    • Вентилятор охлаждения двигателя: типы,диагностика,назначение,устройство.
    • Поршень двигателя: функции,конструкция,типы,фото,видео

Обороты двигателя

Под широкоупотребимым термином «обороты двигателя» имеется в виду количество оборотов коленчатого вала в единицу времени (в минуту).

И мощность, и крутящий момент — величины не постоянные, они имеют сложную зависимость от оборотов двигателя. Эта зависимость для каждого двигателя выражается графиками, подобными нижеследующему:

Производители двигателей борются за то, чтобы максимальный крутящий момент двигатель развивал в как можно более широком диапазоне оборотов («полка крутящего момента была шире»), а максимальная мощность достигалась при оборотах, максимально приближенных к этой полке.

Мощность двигателя

Чем выше мощность, тем большую скорость развивает авто

Мощность — это отношение работы, выполняемой за некоторый промежуток времени, к этому промежутку времени. При вращательном движении мощность определяется как произведение крутящего момента на угловую скорость вращения.

Мощность двигателя последнее время все чаще указывают в кВт, а ранее традиционно указывали в лошадиных силах.

Как видно на приведенном выше графике, максимальная мощность и максимальный крутящий момент достигаются при различных оборотах коленвала. Максимальная мощность у бензиновых двигателей обычно достигается при 5-6 тыс. оборотов в минуту, у дизельных — при 3-4 тыс. оборотов в минуту.

График мощности для дизельного двигателя:

Крутящий момент

Крутящий момент характеризует способность ускоряться и преодолевать препятствия

Крутящий момент (момент силы) — это произведение силы на плечо рычага. В случае кривошипно-шатунного механизма, данной силой является сила, передаваемая через шатун, а рычагом — кривошип коленчатого вала. Единица измерения — Ньютон-метр.

Иными словами, крутящий момент характеризует силу, с которой будет вращаться коленвал, и насколько успешно он будет преодолевать сопротивление вращению.

На практике высокий крутящий момент двигателя будет особенно заметен при разгонах и при передвижении по бездорожью: на скорости машина легче ускоряется, а вне дорог — двигатель выдерживает нагрузки и не глохнет.

Виды мощности

Для определения характеристик двигателя применяют такие понятия мощности как:

  • индикаторная;
  • эффективная;
  • литровая.

Индикаторной называют мощность, с которой газы давят на поршень. То есть, не учитываются никакие другие факторы, а только давление газов в момент их сгорания. Эффективная мощность, эта та сила, которая передается коленчатому валу и трансмиссии. Индикаторная будет пропорциональной литражу двигателя и среднему давлению газов на поршень.

Эффективная мощность двигателя будет всегда ниже индикаторной.

Также есть параметр, называемый литровой мощность двигателя. Это соотношение объема двигателя к его максимальной мощности. Для бензиновых моторов литровая мощность составляет в среднем 30-45 кВт/л, а у дизельных – 10-15 кВт/л.

Как узнать мощность двигателя автомобиля

Можно посмотреть в документах на машину, но иногда требуется узнать мощность автомобиля, который подвергался тюнингу или давно находится в эксплуатации. В таких случаях не обойтись без динамометрического стенда. Его можно найти в специализированных организациях и на станциях техобслуживания. Колеса автомобиля помещаются между барабанами, создающими сопротивление вращению. Далее имитируется движение с разной нагрузкой. Компьютер сам определит мощность двигателя. Для более точного результата может понадобиться несколько попыток.

Роль мощности и крутящего момента двигателя

Для обеспечения лучших динамических показателей двигателя, производители стараются наделить силовой агрегат максимальным крутящим моментом, который будет достигаться в более широком значении оборотов двигателя.

Чтобы правильно оценить роль этих двух понятий, стоит обратить внимание на следующие факты:

  • Взаимосвязь мощности и крутящего момента можно выразить в формуле: P = 2П*M*n, где Р – это мощность, M – показатель крутящего момента, а n – количество оборотов коленвала в единицу времени.
  • Крутящий момент более конкретный показатель характеристики двигателя. Низкий крутящий момент (даже при высокой мощности) не позволит реализовать потенциал двигателя: имея возможность разогнаться до высокой скорости, автомобиль будет достигать этой скорости невероятно долго.
  • Мощность двигателя будет возрастать с повышением оборотов: чем выше, тем больше мощность, но до определенных пределов.
  • Крутящий момент увеличивается с повышением количества оборотов, но при достижении максимального значения показатели крутящего момента снижаются.
  • При равных показателях мощности и крутящего момента более эффективным будет двигатель с меньшим расходом топлива.

Вопрос — ответ

1. Автомобиль в глубокой колее сел на брюхо: ведущие колеса вертятся, не касаясь земли. Водитель упрямо газует. Какую полезную мощность может при этом выдать двигатель?

А — паспортную;

Б — в зависимости от оборотов;

В — нулевую;

Г — в зависимости от включенной передачи.

Правильный ответ: В. Автомобиль не движется, мотор не совершает полезной работы. Значит, и полезная мощность равна нулю.

2. Заднеприводный автомобиль с блокированным дифференциалом движется по плохой дороге. Как распределена мощность между ведущими колесами?

А — поровну;

Б — обратно пропорционально частоте вращения каждого из колес;

В — в зависимости от сил сцепления с покрытием;

Г — прямо пропорционально частоте вращения каждого из колес.

Правильный ответ: В.  При блокированном дифференциале ведущие колеса вращаются с одинаковой скоростью, но моменты на них не выравниваются — они зависят только от сцепления с дорогой. Следовательно, реализуемые колесами мощности тоже определяются силами сцепления с покрытием.

3. На что влияет мощность мотора?

А — на динамику разгона;

Б — на максимальную скорость;

В — на эластичность;

Г — на все перечисленные параметры.

Правильный ответ: Г. Часто полагают, что машину тащит исключительно крутящий момент. Но поставщиком крутящего момента является мотор. Если тот перестанет снабжать колеса энергией, то все динамические параметры будут равны нулю. Например, резко тронуться на повышенной передаче не удастся: при низких оборотах просто не хватит мощности. А она-то и определяет запас энергии, которую способен выдать двигатель. И влияет на все перечисленные параметры.

Поршень двигателя: функции,конструкция,типы,фото,видео

Источник: https://seite1.ru/zapchasti/moshhnost-dvigatelya-kak-rabotaet-i-chto-eto-takoena-chto-vliyaet/.html

Крутящий момент шуруповерта: теория и практика

В чем измеряются обороты двигателя?

Очень часто на форумах люди задаются вопросом, какой мощности им следует выбрать шуруповерт, чтобы спокойно заворачивать саморезы или шурупы такого-то диаметра и длинны? Или, другими словами, какой у шуруповерта должен быть крутящий момент в Н·м для тех или иных задач?

Ответы на эти вопросы люди получают разные. Чаще всего звучат предложения от «всезнающих спецов» купить дорогие полупрофессиональные 18-вольтовые модели. Мол, им точно все по плечу. Но стоит ли переплачивать вдвое, если вдруг окажется, что младшие модели на 10-14 вольт также хороши? А если есть разница, то какова?

Постараемся кратко рассказать о теории и перейти к практике.

Теория

В нашей статье по «выбору лучшего шуруповерта» мы уже касались этой темы, но сейчас расскажем чуть подробнее, но так, чтобы ни у кого не закипела голова от формул.

Основным показателем мощности шуруповерта является вращающий момент (крутящий момент), который измеряется в Н·м. Образно говоря, 10 Н·м будет эквивалентен вращающей силе, создаваемой гирей в один килограмм, закрепленной на рычаге в один метр, другой конец которого жестко прикреплен к вращаемому валу.

Для полупрофессиональных моделей шуруповертов, а также предназначенных для домашних мастеров, типичное значение крутящего момента составляет от 10 до 60  Н·м. Если брать «среднюю температуру по больнице», то можно аккуратно предположить, что некий средний шуруповерт имеет характеристику крутящего момента в 25 Н·м.

Однако тут не все так просто, поскольку на практике выдаваемое значение крутящего момента у электромоторов не постоянно и зависит, в первую очередь, от оборотов – чем выше обороты, тем ниже момент на валу. В идеале график линейный с небольшим наклоном – самый низкий момент будет на максимальных оборотах, самый высокий – при неподвижном вале. Но в последнем случае возникнет ситуация, фактически, короткого замыкания обмоток электромотора. За сколько секунд сгорит мотор, зависит от того, из чего сделаны его обмотки. Но будьте уверены, дым и запах гари будут вам обеспечены.

Чтобы не доводить до «греха», дорогие модели имеют систему автоматического отключения при перегрузке, когда соотношение количества оборотов в секунду по отношению к потребляемому току вдруг превысит опасный порог. Однако у нас тут вопрос совсем в другом – какова грань, за которую переходить нельзя, т.е каковы минимальные обороты двигателя, а, следовательно, крутящий момент, при котором он будет работать без перегрева и дальнейшего ущерба для самого себя?

Иными словами, мы уже оперируем двумя значениями крутящего момента. Как вы думаете, какой из них указывается производителем в технических характеристиках шуруповерта? Нет, не угадали. У каждого производителя своя методика измерения и свое понятие об этой характеристике. Деталей никто не раскрывает, и общего стандарта не существует. Потому очень часто можно наблюдать ситуацию, когда более слабый по характеристикам шуруповерт оказывается заметно мощнее более сильного.

Выходом из этой ситуации могут быть только практические испытания в одинаковых условиях.

Сколько Н·м нужно чтобы завернуть шуруп

Прежде чем дать точный ответ, необходимо уточнить, какой шуруп/саморез и куда. В последнем случае имеет значение плотность и твердость материала. Табличка ниже даст вам представление о некоторой ориентировочной средней плотности и твердости отдельных пород древесины при влажности 12-15%. На самом деле, плотность одной и той же породы древесины может меняться в относительно широких пределах, потому обычно принимают к сведению некие типичные значения:

Порода дерева Плотность, г/см3 Твердость по шкале Янка
Пихта сибирская 0,39 420
Ель 0,45 660
Осина 0,51 420
Сосна 0,52 380-1240
Липа 0,53 400
Береза 0,65 1260
Бук 0,66 1300
Лиственница 0,66 1200
Дуб 0,69 1360
Тис 0,75 1200
Ясень 0,75 1320
Слива 0,8 ~1200
Яблоня 0,9 ~1200
Самшит 0,96 2100

Это означает, что для работы с березой, например, понадобится усилие примерно вдвое выше, чем при работе с елью. Однако связь тут не совсем прямая. Более смолистая древесина будет легче подвергаться обработке.

Теперь перейдем к шурупам. Для нас имеет значение диаметр, длинна, форма и характер резьбы. Например, для тонких саморезов при закручивании в средние по твердости породы дерева (сосна) мы имеем следующую картину:

Размеры шурупа, мм Максимальный крутящий момент, Н·м
4х50 3,56
4х90 4,92
5х50 5,36
5х90 7,24

Источник: «ДрельДоДыр»

Глянув в таблицу, можно подумать, что для саморезов 5х90 подойдет любой из шуруповертов, имеющихся в продаже. Но это не совсем так, о чем в практической части материала.

Подытожим теорию:

  1. мы не знаем, с какого «потолка» взяты цифры характеристик крутящих моментов шуруповертов, указанных производителем;
  2. также Капитан Очевидность подсказывает, что используемый материал оказывает заметное влияние на весь процесс, равно как и параметры шурупов.

Практика

Для практических упражнений мы взяли три разных шуруповерта и два разных типа шурупов/саморезов и будем закручивать их в сухой сосновый брус, попутно фиксируя успешность операции и затраченное время.

Вот названия моделей шуруповертов и их и краткие технические характеристики:

DeFort DCD-12-6 Bosch PSR 960 Hitachi DS 14DCL
крутящий момент, Н·м 10 12 31
частота вращения, об/мин 0-500 0-550 0-4500-1250
аккумулятор Ni-Cd, 12 В, 1,2 А·ч Ni-Cd, 9,6 В, 1,2 А·ч Li-ion, 14,4 В, 1,5А·ч

Два «старичка» (Bosch и DeFort) тут оказались неслучайно. Эти маломощные модели сразу дадут понять, насколько вся вышеизложенная теория была верна, и достаточно ли абсолютно любого шуруповерта, чтобы успешно работать с саморезами 5х90 мм и подобными. А середнячок Hitachi просто дополнит нам картину и выполнит роль некого современного инструмента.

В отношении шурупов мы мелочиться не стали и взяли для пробы тонкий черный 4,8 х 127 мм и, для полноты ощущений, мощный белый 6 х 150 мм. Чтобы закрутить последний в сосновый брус, предположительно, необходим максимальный момент около 11 Н·м.

Итак, в качестве итогов предлагаем вам посмотреть короткий видеоролик, на котором мы запечатлели весь процесс.

Тонкий саморез (4,8 х 127 мм) оказался посильной задачей для всех шуруповертов без исключения, хотя было видно, что Bosch он дался не так легко. Затраченное шуруповертами время составило: 5,3 секунды для DeFort, 7 секунд Bosch и 2,9 секунд Hitachi. Мы не ставили задачу точного сравнения времени и повторяемости, нам был важен только конечный результат. Потому мы сделали лишь по одному дублю для каждой из моделей.

Белый «крепыш» оказался по зубам уже не всем. Как и в предыдущем случае, DeFort начал очень бодро, но последний сантиметр ему так и не покорился.

Bosch, хотя и решил поставленную задачу, но запах подгоревших обмоток дал однозначно понять, что такие нагрузки этому инструменту категорически противопоказаны.

Ну а для мощного Hitachi оба самореза – как игрушки. Вот что показал секундомер: 13,3 секунд у DeFort (не довернул 1 см), 20,7 секунд Bosch и 4,3 секунды Hitachi. Вдобавок отметим, что работал Hitachi во время теста на второй скорости, где момент как минимум на треть ниже максимального заявленного в характеристиках.

Есть у нас к практической части еще одно важное замечание: в нашем тесте участвовали шуруповерты старых моделей (Hitachi не в счет), у которых нет системы защиты от перегрузки. Большинство современных моделей такую систему имеют, потому не дадут так издеваться над инструментом, как это можно наблюдать на видеоролике с шуруповертом Bosch.

Это также означает, что система защиты не даст завернуть такой шуруп до конца с первого раза. Вам придется еще несколько раз включать инструмент до момента очередного срабатывания защиты (обычно это 1-2 секунды), пока шуруп не будет закручен.

Но чтобы так не издеваться над инструментом, разумеется, надо покупать шуруповерт с определенным запасом мощности!

Выводы

Что касается оптимальной мощности (крутящего момента) для работы с шурупами 6 х 150 мм, то, по нашему мнению, она находится в районе 20-30 Н·м. Также можно однозначно сказать, что домашнему мастеру, который шурупов 6 х 150 в глаза никогда не видел, нет никакого смысла тратить деньги на «монстров» с моментом в 40 и более Н·м. Ну разве что только вас привлечет в них большая емкость аккумулятора в ватт-часах (за счет более высокого вольтажа и большего количества «банок») или какие-либо другие особенности.

Статьи по теме:
— Какой шуруповерт купить и как правильно его выбирать
— Тест шуруповерта Deko 18 V: китайцы знают где схитрить
— Лучший шуруповерт в диапазоне 2-7 тыс. рублей (Q1 2017)

Оценка статьи: (5 , 3,20 из 5)
Загрузка…

Источник: https://dacha.news/screwdriver-torque/

Частота вращения: формула

В чем измеряются обороты двигателя?

Количество повторений каких-либо событий или их возникновения за одну единицу таймера называется частотой. Это физическая величина измеряется в герцах – Гц (Hz). Она обозначается буквами ν, f, F, и есть отношение количества повторяющихся событий к промежутку времени, в течение которого они произошли.

Вращение планет вокруг Солнца

При обращении предмета вокруг своего центра можно говорить о такой физической величине, как частота вращения, формула:

ν = N/t,

где:

  • N – количество оборотов вокруг оси или по окружности,
  • t – время, за которое они были совершены.

В системе СИ обозначается как – с-1 (s-1) и именуется как обороты в секунду (об/с). Применяют и другие единицы вращения. При описании вращения планет вокруг Солнца говорят об оборотах в часах. Юпитер делает одно вращение в 9,92 часа, тогда как Земля и Луна оборачиваются за 24 часа.

Номинальная скорость вращения

Прежде, чем дать определение этому понятию, необходимо определиться, что такое номинальный режим работы какого-либо устройства. Это такой порядок работы устройства, при котором достигаются наибольшая эффективность и надёжность процесса на продолжении длительного времени. Исходя из этого, номинальная скорость вращения – количество оборотов в минуту при работе в номинальном режиме. Время, необходимое для одного оборота, составляет 1/v секунд. Оно называется периодом вращения T. Значит, связь между периодом обращения и частотой имеет вид:

Т = 1/v.

К сведению. Частота вращения вала асинхронного двигателя – 3000 об./мин., это номинальная скорость вращения выходного хвостовика вала при номинальном режиме работы электродвигателя.

Как найти или узнать частоты вращений различных механизмов? Для этого применяется прибор, который называется тахометр.

Прибор для измерения частоты вращения – тахометр Testo 477

Угловая скорость

Когда тело движется по окружности, то не все его точки движутся с одинаковой скоростью относительно оси вращения. Если взять лопасти обычного бытового вентилятора, которые вращаются вокруг вала, то точка расположенная ближе к валу имеет скорость вращения больше, чем отмеченная точка на краю лопасти. Это значит, у них разная линейная скорость вращения. В то же время угловая скорость у всех точек одинаковая.

Угловая скорость представляет собой изменение угла в единицу времени, а не расстояния. Обозначается буквой греческого алфавита – ω и имеет единицу измерения радиан в секунду (рад/с). Иными словами, угловая скорость – это вектор, привязанный к оси обращения предмета.

Формула для вычисления отношения между углом поворота и временным интервалом выглядит так:

ω = ∆ϕ/∆t,

где:

  • ω – угловая скорость (рад./с);
  • ∆ϕ – изменение угла отклонения при повороте (рад.);
  • ∆t – время, затраченное на отклонение (с).

Обозначение угловой скорости употребляется при изучении законов вращения. Оно употребляется при описании движения всех вращающихся тел.

Угловая скорость в конкретных случаях

На практике редко работают с величинами угловой скорости. Она нужна при конструкторских разработках вращающихся механизмов: редукторов, коробок передач и прочего.

Вычислить её, применяя формулу, можно. Для этого используют связь угловой скорости и частоты вращения.

ω = 2*π / Т = 2*π*ν,

где:

  • π – число, равное 3,14;
  • ν – частота вращения, (об./мин.).

В качестве примера могут быть рассмотрены угловая скорость и частота вращения колёсного диска при движении мотоблока. Часто необходимо уменьшить или увеличить скорость механизма. Для этого применяют устройство в виде редуктора, при помощи которого понижают скорость вращения колёс. При максимальной скорости движения 10 км/ч колесо делает около 60 об./мин. После перевода минут в секунды это значение равно 1 об./с. После подстановки данных в формулу получится результат:

ω = 2*π*ν = 2*3,14*1 = 6,28 рад./с.

К сведению. Снижение угловой скорости часто требуется для того, чтобы увеличить крутящий момент или тяговое усилие механизмов.

Шестерёнчатый уменьшитель хода для мотокультиватора

Как определить угловую скорость

Принцип определения угловой скорости зависит от того, как происходит движение по окружности. Если равномерно, то употребляется формула:

ω = 2*π*ν.

Если нет, то придётся высчитывать значения мгновенной или средней угловой скорости.

Величина, о которой идёт разговор, векторная, и при определении её направления используют правило Максвелла. В просторечии – правило буравчика. Вектор скорости имеет одинаковое направление с поступательным перемещением винта, имеющего правую резьбу.

Правило Максвелла для угловой скорости

Рассмотрим на примере, как определить угловую скорость, зная, что угол поворота диска радиусом 0,5 м меняется по закону ϕ = 6*t:

ω = ϕ / t = 6 * t / t = 6 с-1

Вектор ω меняется из-за поворота в пространстве оси вращения и при изменении значения модуля угловой скорости.

Угол поворота и период обращения

Рассмотрим точку А на предмете, вращающимся вокруг своей оси. При обращении за какой-то период времени она изменит своё положение на линии окружности на определённый угол. Это угол поворота. Он измеряется в радианах, потому что за единицу берётся отрезок окружности, равный радиусу. Ещё одна величина измерения угла поворота – градус.

Сопротивление тока: формула

Когда в результате поворота точка А вернётся на своё прежнее место, значит, она совершила полный оборот. Если её движение повторится n-раз, то говорят о некотором количестве оборотов. Исходя из этого, можно рассматривать 1/2, 1/4 оборота и так далее. Яркий практический пример этому – путь, который проделывает фреза при фрезеровании детали, закреплённой в центре шпинделя станка.

Внимание! Угол поворота имеет направление. Оно отрицательное, когда вращение происходит по часовой стрелке и положительное при вращении против движения стрелки.

Если тело равномерно продвигается по окружности, можно говорить о постоянной угловой скорости при перемещении, ω = const.

В этом случае находят применения такие характеристики, как:

  • период обращения – T, это время, необходимое для полного оборота точки при круговом движении;
  • частота обращения – ν, это полное количество оборотов, которое совершает точка по круговой траектории за единичный временной интервал.

Интересно. По известным данным, Юпитер обращается вокруг Солнца за 12 лет. Когда Земля за это время делает вокруг Солнца почти 12 оборотов. Точное значение периода обращения круглого гиганта – 11,86 земных лет.

Циклическая частота вращения (обращения)

Что нужно знать об индукционных счётчиках

Скалярная величина, измеряющая частоту вращательного движения, называется циклической частотой вращения. Это угловая частота, равная не самому вектору угловой скорости, а его модулю. Ещё её именуют радиальной или круговой частотой.

Циклическая частота вращения – это количество оборотов тела за 2*π секунды.

У электрических двигателей переменного тока это частота асинхронная. У них частота вращения ротора отстаёт от частоты вращения магнитного поля статора. Величина, определяющая это отставание, носит название скольжения – S. В процессе скольжения вал вращается, потому что в роторе возникает электроток. Скольжение допустимо до определённой величины, превышение которой приводит к перегреву асинхронной машины, и её обмотки могут сгореть.

Устройство этого типа двигателей отличается от устройства машин постоянного тока, где токопроводящая рамка вращается в поле постоянных магнитов. Большое количество рамок вместил в себя якорь, множество электромагнитов составили основу статора. В трёхфазных машинах переменного тока всё наоборот.

При работе асинхронного двигателя статор имеет вращающееся магнитное поле. Оно всегда зависит от параметров:

  • частоты питающей сети;
  • количества пар полюсов.

Скорость вращения ротора состоит в прямом соотношении со скоростью магнитного поля статора. Поле создаётся тремя обмотками, которые расположены под углом 120 градусов относительно друг друга.

Переход от угловой к линейной скорости

Существует различие между линейной скоростью точки и угловой скоростью. При сравнении величин в выражениях, описывающих правила вращения, можно увидеть общее между этими двумя понятиями. Любая точка В, принадлежащая окружности с радиусом R, совершает путь, равный 2*π*R. При этом она делает один оборот. Учитывая, что время, необходимое для этого, есть период Т, модульное значение линейной скорости точки В находится следующим действием:

ν = 2*π*R / Т = 2*π*R* ν.

Так как ω = 2*π*ν, то получается:

ν = ω* R.

Следовательно, линейная скорость точки В тем больше, чем дальше от центра вращения находится точка.

К сведению. Если рассматривать в качестве такой точки города на широте Санкт-Петербурга, их линейная скорость относительно земной оси равна 233 м/с. Для объектов на экваторе – 465 м/с.

Числовое значение вектора ускорения точки В, движущейся равномерно, выражается через R и угловую скорость, таким образом:

а = ν2/ R, подставляя сюда ν = ω* R, получим: а = ν2/ R = ω2* R.

Это значит, чем больше радиус окружности, по которой движется точка В, тем больше значение её ускорения по модулю. Чем дальше расположена точка твердого тела от оси вращения, тем большее ускорение она имеет.

Поэтому можно вычислять ускорения, модули скоростей необходимых точек тел и их положений в любой момент времени.

Связь между угловой и линейной скоростями

Понимание и умение пользоваться расчётами и не путаться в определениях помогут на практике вычислениям линейной и угловой скоростей, а также свободно переходить при расчётах от одной величины к другой.

Источник: https://amperof.ru/teoriya/chastota-vrashheniya-formula.html

Autoline-eu.ru
Добавить комментарий