Отличия систем наддува твин-турбо и битурбо
Автомобиль ценится не только за качество сборки и дизайн, но и за скорость. Мощность двигателя позволяет добиться новых возможностей от транспортного средства, поэтому водители часто задумываются об увеличении скорости в своей машине. Популярным методом является использовать твин-турбо и битурбо, но есть ли между ними разница?
Суть вопроса
Многие современные автомобили используют такие технологии двигателей для увеличения используемого топлива. За счёт большего количества впрыскиваемого горючего, повышается общая скорость движения. Настоящая технология была известна ещё в ХХ веке — компоновку из двух труб называли Double Turbo, Twin-turbo и так далее. Сегодня они представлены как технологии твин-турбо и битурбо.
Что это значит
Biturbo представляет собой конструкцию турбонаддува, которая имеет вид двух турбин. Первая из них большого размера, а вторая уменьшенного. В то время как первая добавляет к двигателю мощный поток воздуха, меньшая турбина служит основным элементом для работы в среднем диапазоне скоростей. Такая система нацелена на более плавную работу ускоренного движения.
Конструкция twin-turbo больше ориентируется на прирост мощности, чем на стабильную работу автомобиля. По этой причине в ней используются две одинаковые турбины, которые воздействуют непосредственно на скорость движения.
Отличия компоновки
По словам производителей, между этими системами ощущается большая разница. На самом деле значительных отличий в технологии не наблюдается. Это успешный маркетинговый ход, который положительно влияет на продажи изделий. Biturbo и twin-turbo способны использовать разные технологические вариации в виде разного размера турбин, поэтому являются универсальными системами.
Например, турбонаддув во многих автомобилях носит название Twin-turbo (Mitsubishi 3000 VR-4). При этом в машине установлен двигатель V6, обладающий двумя турбинами для трёх цилиндров, использующих поток выхлопных газов. В немецком производстве также есть подобные системы, но они имеют название Biturbo.
Как показывает практика, японцы в большей степени используют twin-turbo, когда в Европе более популярным является biturbo. В нашей стране можно приобрести обе вариации с различными технологическими особенностями.
Классический вариант
Технология двойного турбонаддува значит, что используются два компрессора. Возникает достаточно большая сложность с установкой двух выхлопных труб на одну магистраль, так как между ними должно находиться пространство. Частой проблемой является неодинаковое распределение энергии между двумя компрессорами. Этот недостаток был решён оригинальной формой турбины twin-turbo в виде крыльчатки, что синхронизировало работу всего устройства.
Особенностями компоновки системы twin-turbo являются некоторые недостатки:
- присутствие так называемой «турбоямы», при которой турбины не работают;
- ближняя турбина получает ускоренный износ;
- подача газа происходит с замедлением;
- сложная установка для моторов V-типа.
Компания Toyota предложила своё решение этих проблем — она сделала собственный вариант для турбокомпрессоров biturbo. При малых оборотах клапаны изделия закрыты, поэтому выхлопные газы выходят через первую турбину. Она, в свою очередь, быстро раскручивается и позволяет обойти «турбояму» на раннем этапе. Когда движение достигает 3500 оборотов в минуту, двигатель открывает специальные клапаны для излишков газа, отчего весь горячий воздух перенаправляется к турбокомпрессору, существенно увеличивая мощность мотора.
Современный взгляд
Система biturbo стала применяться меньше, ведь V-моторы получили большое распространение. Она оказалась неудобной из-за своих конструктивных особенностей. В 80-х годах была внедрена система с креплением турбины за цилиндрами. Это позволило установить турбокомпрессоры ближе до коллекторов, чтобы снизить аэродинамические потери и повысить общую скорость. Это также улучшило общую устойчивость системы.
Особенности сборки
Чаще всего система twin-turbo позволяет использовать единый впускной коллектор, отчего затраты на обслуживание несколько снижаются, хотя и мощность двигателя уменьшается. Чтобы это компенсировать, были использованы раздельные коллекторы и впускные тракты. Это позволило использовать систему для небольших моторов, на которых турбокомпрессоры всегда размещались последовательно.
Компания BMW имеет своё видение для технологии twin-turbo — расположение турбин находилось в развале V8, а не по сторонам, как обычно. Главной особенностью было то, что компрессоры были запитаны цилиндрами, которые располагались в обеих сторонах. Благодаря такому решению, «турбояма» была уменьшена на 40% без существенных потерь мощности. К тому же это уменьшило вибрации от работы оборудования.
Для обычного пользователя автомобиля необязательно знать разницу, что такое твин-турбо и битурбо, потому что эти системы являются максимально похожими. Особенность в вариациях размера турбин и последовательности их подключения делает эти конструкции универсальными. Twin-turbo больше нацелена на удобство и комфортную поездку, в то время как biturbo представлена в виде более мощной системы. Их сборка может изменяться, исходя из требований, поэтому выбирать можно любую из этих систем.
Если вы наслышаны о технологиях biturbo и twin-turbo, но не знаете, какую из них лучше выбрать, стоит обратить внимание на техническую часть автомобиля. Чаще всего все различия между системами представлены лишь в названии.
Источник: https://CarExtra.ru/obzory/otlichiya-sistem-nadduva.html
Твин турбо на вашу машину
Очевидно, что турбокомпрессор (он же – турбина) устанавливают на двигатель автомобиля для увеличения его мощности. В настоящее время технический прогресс позволяет использовать для максимально полного достижения этой цели систему наддува BITURBO и ТWIN-TURBO. Часто возникает вопрос, есть ли между ними разница? Что это: две разных системы наддува или два названия одной системы?
“BI” или “TWIN”
Когда автомобили с двумя турбинами только начали появляться, почти все они назывались БИТУРБО. С течением времени и развитием прогресса появилась система последовательного наддува с двумя последовательно расположенными нагнетателями, а за ней – и еще более совершенная система двухступенчатого наддува. Во всех этих случаях в процессе участвуют две турбины. Какие из них как называть, решать вам – для этого дочитайте эту статью до конца.
Как уже говорилось, изначально все эти системы наддува назывались БИТУРБО. Отмечу, что ещё до появления последовательного наддува автомобили с параллельно установленными турбинами стали называть уже по-новому – ТВИН-ТУРБО, затем это название стали применять и к последовательному, и к двухступенчатому наддуву. Так же складывалась ситуация и у мировых производителей: кто-то при выпуске серийного а/м называл современный последовательный наддув БИТУРБО, а кто-то параллельный вид наддува – ТВИН-ТУРБО. Решение автопроизводителя было в некотором роде непредсказуемо. Например, Volvo S80/XC90 (B6284T/B6294T) R6 Twinturbo , BMW 335/535 N74 (V 12 TwinPower Turbo).
Твин-турбо
И это еще не самое интересное. Выражение «TwinPower Turbo» компания BMW использует и для двигателей с одним турбокомпрессором механизма Twin Scroll. Этот факт в очередной раз доказывает, что выбор одного из двух этих названий обусловлен исключительно прихотью автопроизводителя и не имеет прямого отношения к конструктивной схеме.
Система BITURBO отличается от системы TWIN-TURBO только тем, что раньше говорили BITURBO , а теперь стало модно ТВИН.
Конечно, чтобы быть абсолютно точным, надо помнить, что известные мировые автопроизводители называют свои, зачастую индивидуально заряженные, версии на заводах – и стало быть, как они пишут, так надо и называть.
В подтверждение этого простого-сложного вопроса, прочтём, какие названия давал производитель двигателям, оснащенным двумя турбокомпрессорами, работающими по параллельной схеме наддува:
- Audi 2.7 Biturbo (V6 Biturbo, A6/S4/RS4)
- Audi 4.2 Biturbo (V8 Biturbo, RS6)
- Audi 4.0 TFSI (V8 Twinturbo/Biturbo, S6/RS6/S7/RS7/A8/S8)
- BMW N54 (R6 TwinPower Turbo, 135i/335i/535i/740i/Z4/X6/1M Coupe)
- BMW N63/S63 (V8 TwinPower Turbo, 550i/650i/750i/X5/X5 M/X6/X6 M/M5/M6)
- BMW N74 (V12 TwinPower Turbo, 760i)
- Mercedes-Benz M278/M157/M158 (V8 Bi-turbo, S500/CL500/CLS500/E550/GL550/S63 AMG/CL53 AMG/CLS63 AMG/E63 AMG/SLK55 AMG)
- Mercedes-Benz M275/M285/M158 (V12 Bi-turbo, S65 AMG/CL65 AMG/SL 65 AMG/ Maybach/Pagani)
- Porsche 3.6/3.8 Turbo (H6 Twinturbo, 911 Turbo/Turbo S/GT2/GT2 RS)
- Porsche 4.5/4.8 Turbo (V8 Twinturbo, Cayenne Turbo/Panamera Turbo)
Разновидности BITURBO/TWIN-TURBO
Разобравшись с тем, что два эти названия взаимозаменяемы, можно поговорить о разных системах из двух турбин. Различают несколько видов системы BITURBO/TWIN-TURBO:
- Параллельный;
- Последовательный;
- Ступенчатый.
Поговорим о них подробнее.
Параллельная система наддува – система двух турбин, относящихся к одному виду и размещенных параллельно. При этом турбины работают одновременно. Преимущества параллельной системы в том, что в ее случае две небольшие или средние турбины обладают меньшей инерционностью по сравнению с одной мощной, но большой турбиной.
Такая система соединения позволяет турбокомпрессорам равномерно распределять между собой потоки газов во время работы. Сначала сжатый воздух подается компрессорами в общий для них впускной коллектор. Затем этот воздух может распределяться по цилиндрам, или, реже, подаваться раздельно для каждого ряда цилиндров. Параллельная система наддува чаще всего используется в работе дизельных V-образных двигателях, где каждый турбонагнетатель зафиксирован на собственном выпускном коллекторе.
Таким образом, при параллельной системе турбонаддува турбины работают на всех оборотах двигателя, а так называемая «турбояма» становится существенно меньше.
Последовательная система турбонаддува представляет собой систему из двух полностью одинаковых турбин. При этом существенное отличие работы такой системы в том, что одна турбина функционирует постоянно, а вторая подключается к работе только при возрастании числа оборотов мотора. Чтобы второй турбокомпрессор запускался вовремя, в систему введена схема электронной регулировки его работы с помощью специального клапана, что и делает эту систему более сложной.
Ступенчатая система турбонаддува является самой сложной, эффективной и современной реализацией принципа BI/TWIN-TURBO. В двухступенчатую систему объединяются две турбины – малая и большая. Они установлены во впускном и выпускном тракте. При работе турбокомпрессоров происходит клапанная регулировка отработанных газов и сжатого воздуха. При увеличении оборотов двигателя начинается одновременная слаженная работа обеих турбин.
При этом происходит раскрытие перепускного клапана отработанных газов, вследствие чего некоторая их часть проходит через большую турбину, и она раскручивается сильнее. По достижении некоторого определенного уровня давления на впуске турбонагнетатель большой турбины сжимает воздух (при этом давление еще не достаточное). Затем сжатый воздух поступает в компрессор малой турбины, и там давление продолжает расти. Пи этом перепускной клапан наддува остается все еще закрытым.
Когда, наконец, двигатель достигает максимальной нагрузки, происходит полное открытие перепускного клапана. Отработанные газы проходят через большую турбину, из-за чего она раскручивается до самой высокой частоты, а вот малый турбокомпрессор в это время прекращает движение. На впуске большой компрессор создает наибольшее давление наддува, а малый, в свою очередь, напротив, обеспечивает сопротивление воздушным потокам.
В результате в некоторый момент перепускной клапан наддува раскрывается, и происходит поступление сжатого воздуха непосредственно в двигатель.
Как видно из всего вышесказанного, двухступенчатая система BI/TWIN-TURBO создана специально для того, чтобы поддерживать максимально возможную эффективную работу турбонагнетателя при всех без исключения режимах работы двигателя автомобиля.
Источник: https://turbo-lider.com/twin-turbo/
Турбокомпрессор: устройство,принцип работы,фото,видео
Турбина в двигателе или как бывает называют турбокомпрессов дает больше мощности агрегату. Чтоб понять как устроен и принцип работы системы, рассмотрим это все в деталях.
Немного о турбокомпрессоре
Турбокомпрессор или его ещё называют «газотурбинный нагнетатель» (Centrifugal compressors или очень популярно называть «Turbocharger») — это осевой или центробежный компрессор, что функционирует вместе с турбиной. Это конструктивный основной элемент в автомобилях с газотурбированными двигателями.
Давление во впускной системе можно повысить при помощи установки турбокомпрессора, использующего энергию отработавших газов. При его использовании масса воздуха, имеющегося в камерах сгорания, увеличивается. Механический нагнетатель не так эффективен, как турбированный компрессор газов, потому что мощность двигателя не используется для привода.
Тем не менее, после установки центробежной турбины некоторые потери мощности неизбежны. Отработавшие газы из цилиндров не находят выхода, так как турбина преграждает их путь наружу. На двигатель приходится большая нагрузка по очистке цилиндров, вследствие того, что в выпускном тракте создаётся огромное давление. На эту задачу тратится некоторая часть мощности двигателя авто. Конечно, эта потеря ничтожна в сравнении с приростом мощности двигателя объёмом в 30–40%.
После установки центробежной турбины, можно столкнуться с ещё одной проблемой, которая в обиходе называется турбояма. Выходная мощность двигателя изменяется с отставанием от смены давления отработавших газов. Главными факторами, из-за которых образуется турбояма, являются силы трения, инерционность и нагрузка турбины.
Принцип работы автомобильного турбокомпрессора
Турбокомпрессор является сложным устройством, используемым в целях увеличения мощностных характеристик двигателя благодаря большему количеству воздуха, который подается в цилиндры. Принцип работы турбокомпрессора сводится к следующему:
- при попадании в мотор топливовоздушной смеси происходит ее сгорание, которая затем выходит через выхлопную трубу. В начале выпускного коллектора установлена крыльчатка, крепко соединенная с другой крыльчаткой, расположенной уже во впускном коллекторе;
- поток выходящих из двигателя выхлопных газов раскручивает крыльчатку, находящуюся в выпускном коллекторе, которая в свою очередь приводит в движение крыльчатку, установленную на впуске;
- так, в мотор поступает большее количество воздушной массы, а значит, в него подается и больше топлива. Как известно, чем больше сгорает топливной смеси, тем мощнее становится двигатель. Задача автомобильного турбокомпрессора как раз и состоит в том, чтобы поставлять в силовой агрегат больше воздуха для сжигания большего количества топлива, за счет чего и достигается значительная прибавка мощности.
Что такое турбо-яма?
Стоит добавить, что крыльчатка турбокомпрессора способна развивать до двухсот тысяч оборотов в минуту, благодаря чему данное устройство отличается большой инерционностью или, говоря иначе, имеет «турбо-яму», которая проявляется при резком нажатии на педаль газа. В этот момент крыльчатка медленно приводится в движение, и приходится некоторое время ждать, чтобы автомобиль начал набирать скорость.
Этот эффект имеет продолжительность всего несколько секунд, но, тем не менее, он не доставляет особого удовольствия при разгоне машины. На сегодняшний день производители, так или иначе, смогли устранить эффект «турбо-ямы» путем установки двух перепускных клапанов. Один предназначен для выработанных газов, задача второго состоит в том, чтобы перепускать избыток воздуха в трубопровод турбокомпрессора из впускного коллектора.
Благодаря этой системе обороты крыльчатки при сбросе газа уменьшаются в замедленном темпе, в то время как при резком нажатии на педаль акселератора происходит поступление воздушной массы в двигатель в полном объеме.
Функция турбины, настройка и ее дефекты
Функция турбокомпрессора заключается в том, чтобы увеличивать выходную мощность и крутящий момент двигателя. Благодаря турбине производители могут уменьшать количество рабочих цилиндров в двигателе без снижения мощности и крутящего момента.
Например, только трехцилиндровый 1,0 литровый турбомотор может выдавать мощность в 90 л.с. Добиться такой же производительности обычный бензиновый трехцилиндровый мотор без дорогостоящих модификаций не сможет ни один автопроизводитель.
Также 1,0 литровый турбированный трехцилиндровый двигатель имеет более низкий расход топлива и небольшой уровень выхлопных газов СО2.
Именно поэтому турбированные моторы стали очень распространенными в малолитражных бензиновых автомобилях за последние несколько лет.
Также все чаще стали выпускаться дизельные двигатели с двумя турбинами (Bi-Turbo), что позволяет производителям не только добиваться потрясающий мощности от дизельных автомобилей, но снижать уровень вредных веществ в выхлопе до рекордных значений.
В большинстве случаев работа современных турбокомпрессоров основана на тех же принципах, которые создал Швейцарский изобретатель Альфред Бучи. То есть большинство турбин в современных автомобилях работают от давления, образующего от выхлопных газах в камере сгорания двигателя.
Недавно также стали появляться турбины, которые могут работать, как от электричества, так и традиционно от газа, поступающего из выхлопной системы. Благодаря этому инженеры добились максимальной мощности и крутящего момента при небольших оборотах двигателя. Например, подобная турбо технология используется в дизельном 4,0 литровом моторе Audi V8 TDI, который устанавливается на кроссовер SQ7.
Эксплуатация и техническое обслуживание автомобильных турбин
С каждым годом во всем мире ужесточаются экологические требования к выхлопу современных автомобилей. В результате все больше новых автомобилей оснащаются турбинами. Таким образом автопроизводители пытаются выпускать автомобили, которые будут соответствовать жёстким экологическим нормам. Увы, без использования турбин в современных автомобилях добиться сокращения уровня вредных веществ в выхлопе без миллиардных инвестиций невозможно.
Виды и срок службы турбокомпрессоров
Основным недостатком работы турбины является возникающий на малых оборотах двигателя эффект «турбоямы». Он представляет собой временную задержку отклика системы на изменение оборотов двигателя. Для устранения этого недостатка разработаны различные виды турбокомпрессоров:
- Система twin-scroll, или раздельный турбокомпрессор. Конструкция имеет два канала, которые разделяют камеру турбины и, соответственно, поток отработавших газов. Это обеспечивает более быстрое реагирование, максимальную производительность турбины, а также предотвращает перекрытие выпускных каналов.
- Турбина с изменяемой геометрией (с переменным соплом). Такая конструкция чаще используется на дизеле. Она предусматривает изменение сечения входа в колесо турбины за счет подвижности ее лопастей. Смена угла поворота позволяет регулировать поток отработавших газов, благодаря чему происходит согласование скорости отработавших газов и рабочих оборотов двигателя. На бензиновом двигателе турбина с изменяемой геометрией часто устанавливается на спортивных автомобилях.К минусам турбокомпрессоров можно отнести и небольшой срок службы турбины. Для бензиновых двигателей он в среднем составляет 150 000 километров пробега машины. В свою очередь, ресурс турбины дизельного двигателя несколько больше и в среднем достигает 250 000 километров. При постоянной езде на высоких оборотах, а также при неправильном подборе масла сроки эксплуатации могут сократиться в два или даже в три раза.В зависимости от того, как работает турбина, на бензиновом или дизельном двигателе, можно судить о ее исправности. Сигналом о необходимости проверки узла является появление синего или черного дыма, снижение мощности двигателя, а также появление свиста и скрежета. Для профилактики неисправностей необходимо вовремя менять масло, воздушные фильтры и регулярно проходить техобслуживание.
ПРЕИМУЩЕСТВА И НЕДОСТАТКИ ПРИМЕНЕНИЯ ТУРБОНАДДУВА
1. Турбокомпрессор широко используется ввиду простоты конструкции и хороших эксплуатационных параметров. Турбонаддув позволяет увеличить мощность двигателя на 20-35%. Двигатель, вырабатывая повышенные крутящие моменты на средних и высоких оборотах, увеличивает скорость и экономичность автомобиля.2.
Турбокомпрессор в большинстве случаев не может быть причиной неисправностей двигателя, так как его работа зависит от работоспособности газораспределительной, воздушной и топливной систем.3. Двигатель с турбокомпрессором имеет меньший выброс вредных газов в атмосферу, так как вырабатываются дополнительные выхлопные газы в двигатель. У сгораемого топлива становится меньше отходов.4. Происходит экономия топлива на 5-20%.
В небольших двигателях энергия сжигаемого топлива используется эффективней, увеличивается КПД.5. На высокогорных дорогах такие двигатели работают более стабильно и с меньшими потерями мощности, чем их атмосферные аналоги.
6. Турбокомпрессор сам по себе является глушителем шума в системе выпуска.
О НЕДОСТАТКАХ
У турбированных двигателей кроме возникновения явлений «турбояма» и «турбоподхват» есть и другие недостатки.
Обслуживание их дороже в сравнении с «классическими». При эксплуатации приходится применять моторное масло специального назначения — его приходится регулярно менять. Двигатель с турбокомпрессором перед пуском должен несколько минут проработать на холостых оборотах. Также сразу не рекомендуется глушить мотор до остывания турбины.
Использование двух турбокомпрессоров и других турбо деталей
На некоторые двигатели устанавливается два турбокомпрессора разного размера. Малый турбокомпрессор быстрее набирает обороты, снижая тем самым задержку ускорения, а большой обеспечивает больший наддув при высокой скорости вращения двигателя.
Когда воздух сжимается, он нагревается, а при нагревании воздух расширяется. Поэтому повышение давления от турбокомпрессора происходит в результате нагревания воздуха до его впуска в двигатель. Для того, чтобы увеличить мощность двигателя, необходимо впустить в цилиндр как можно больше молекул воздуха, при этом не обязательно сжимать воздух сильнее.
Охладитель воздуха или охладитель наддувочного воздуха является дополнительным устройством, которое выглядит как радиатор, только воздух проходит как внутри, так и снаружи охладителя. При впуске воздух проходит через герметичный канал в охладитель, при этом более холодный воздух подается снаружи по ребрам при помощи вентиляторов охлаждения двигателя.
Охладитель увеличивает мощность двигателя, охлаждая сжатый воздух от компрессора перед его подачей в двигатель. Это значит, что если турбокомпрессор сжимает воздух под давлением 7 фунт/дюйм2 (0,5 бар), охладитель осуществит подачу охлажденного воздуха под давлением 7 фунт/дюйм2 (0,5 бар), который является более плотним и содержит больше молекул, чет теплый воздух.
Турбокомпрессоры также обладают преимуществом на большой высоте, где плотность воздуха ниже. Обычные двигатели будут работать слабее на большой высоте над уровнем моря, т.к. на каждый ход поршня подаваемая масса воздуха будет меньше. Мощность двигателя с турбокомпрессором также снизится, но менее заметно, т.к. разреженный воздух легче сжимать.
В старых автомобилях с карбюраторами автоматически увеличивается подачу топлива в соответствии с увеличением подачи воздуха. В современных автомобилях происходит то же самое. Система впрыска топлива ориентируется на данные датчика кислорода в выхлопе для определения необходимого соотношения топлива и воздуха, так что система автоматически увеличивает подачу топлива при установленном турбокомпрессоре.
При установке мощного турбокомпрессора на двигатель с впрыском топлива, система может не обеспечить необходимое количество топлива — либо программное обеспечение контроллера не допустит, либо инжекторы и насос не смогут осуществить необходимую подачу. В этом случае необходимо осуществлять уже другие модификации для максимального использования преимуществ турбокомпрессора.
Схема турбины с изменяемой геометрией (VNT)
Она также известна под названием – трубина с переменным соплом. Данный тип турбины используется в дизельных двигателях. Девять подвижных лопастей, установленных в турбокомпрессоре, регулируют прохождение потока газов к турбине. Увеличение и блокировка потока газов достигается при помощи привода, регулирующего угол наклона девяти лопастей. Скорость потока газов и давление нагнетаемого воздуха согласуются с количеством оборотов двигателя во время изменения угла наклона лопастей.
Следует напомнить о том, что некоторые двигатели используют несколько турбокомпрессоров. Возможно использование двух (Твин Турбо), трех или же четырёх. В таких конструкциях они устанавливаются последовательно. Первый используется при низких оборотах, а второй — при высоких. Также существует схема установки компрессоров, при которой они располагаются параллельно друг другу. Она используется на V-образных двигателях. На каждый ряд цилиндров приходится по компрессору. Бытует мнение, что один большой турбокомпрессор менее производителен, чем два маленьких.
Источник: https://seite1.ru/zapchasti/turbokompressor-ustrojstvoprincip-rabotyfotovideo/.html
Би-турбо (Bi-Turbo) и Твин-турбо (Twin-Turbo), двойной наддув – различия. Так отличаются или нет?
Турбированные двигатели не так просты, как кажется, рядом с этой темой витает много непоняток и неопределенностей. Одна из таких – про два строения «би-турбо» и «твин-турбо». Не так давно сам лично был свидетелем разговора двух автовладельцев, один заверял — что разница есть, а вот другой – что отличий нет! Так в чем же правда? Действительно, чем отличаются эти два строения ТУРБО моторов, давайте разбираться …
Если честно, то разница, конечно — будет, но она не будет носить категорический характер! Лишь потому что названия взяты у разных производителей, которые устанавливают свои агрегаты с различной компоновкой и строением.
Однако и система «Би-турбо» и «Тви-нтурбо» — по сути одно и тоже. Если взять английский язык и посмотреть на обозначение, Bi-Turbo и Twin-Turbo, можно увидеть две приставки «Bi» и «Twin» — если грубо перевести то получается – «ДВА» или «ДВЕ». Не что иное — как обозначение наличия двух турбин на двигателе, причем и одно и другое название можно применять к одному и тому же двигателю, то есть они абсолютно — взаимозаменяемые. Эти названия не несут в себе какие-то технические различия, так что это «голый маркетинг».
Две турбины на двигатель – как и зачем?
Сейчас может возникнуть вопрос, а вообще зачем? Все просто есть всего два вопроса, которые они призваны решать:
- Устранение турбоямы, можно сказать, что это первоочередная проблема.
- Увеличение мощности.
- Строение двигателя.
Начну, пожалуй, с самого простого пункта – это строение двигателя. Конечно, легко ставить одну турбину, когда у вас есть рядный двигатель на 4 или 6 цилиндров. Глушитель то один. Но вот что делать, когда у вас скажем V образный мотор? И по три – четыре цилиндра на каждую строну, тогда и глушителя два! Вот и ставят на каждый по турбине, средней или малой мощности.
Устранение турбоямы – как я уже писал сверху, это задача номер «1». Все дело в том что у турбированного мотора, есть провал — когда вы нажимаете на газ, отработанным газам нужно пройти и раскрутить крыльчатку турбины, именно это время и «проседает» мощность, это может быть от 2 до 3 секунд! А если вам на скорости нужно сделать обгонный маневр – это не безопасно! Вот и устанавливают различные турбины, а зачастую компрессор + турбина. Один работает на низких оборотах, то есть на старте, чтобы избежать «турбоямы», вторая – на скорости когда нужно оставить тягу.
Увеличение мощности – это самый банальный случай. То есть для увеличения мощности мотора, к маломощной турбине устанавливают еще одну мощную, таким образом — дуют они две, что значительно повышает производительность. Кстати на некоторых гоночных машинах, есть и три и даже четыре турбины, но это очень сложно и в серию, как правило не идет!
Вот собственно и решения, для которых применяют «ТВИНТУРБО» или «БИТУРБО» и знаете это реально выход, от избавления от турбоямы и увеличения мощности.
Про строение
Сейчас на многих авто применяются всего два основных строения — расположения двух турбин. Это параллельное и последовательное (известное еще как секвентальное).
Например, некоторые Мицубиши имеют именно «ТВИНТУРБО», но параллельную работу, как я уже отмечал сверху, это две турбины на агрегате V6, по одной на каждую сторону. Дуют они в общий коллектор. А вот например на некоторых АУДИ, также есть параллельная работа на двигателе V6, но название «БИТУРБО».
На автомобилях Тойота в частности на «СУПРА», стоит рядная шестерка, однако тут также есть два наддува – работают они в хитром порядке, могут работать сразу два, могут один работает, другой нет, могут включаться попеременно. Все зависит от вашей манеры езды – добиваются такой работы «хитрыми» перепускными клапанами. Вот вам последовательно-параллельная работа.
Как и на некоторых автомобилях СУБАРУ – первая (малая) нагнетает воздух на низких оборотах, вторая (большая) подключается только тогда, когда обороты значительно выросли, вот вам и параллельное включение.
Так разница все же есть или отличий вообще нет? Знаете негласно, производители все же отличают эти два строения, давайте подробнее.
БИ-ТУРБО (BI-TURBO)
Как правило, это два последовательно включаемых турбины в работу. На ярком примере СУБАРУ – одна малая и затем другая большая.
Малая раскручивается намного быстрее, потому как не обладает большой инерционной энергией – логично она включается в работу на низах, то есть первой. Для малых скоростей и до невысоких оборотов этого вполне достаточно. Но при больших скоростях и оборотах этот «малыш» практически бесполезен, тут нужна подача, куда большего объема сжатого воздуха – включается вторая более тяжелая и мощная турбина. Которая дает нужную мощность и производительность. Что дает такое последовательное размещение в BI-TURBO? Это почти исключение турбоямы (комфортное ускорение) и высокая производительность на высоких скоростях, когда тяга остается даже на скоростях за 200 км/ч.
Нужно отметить, что могут быть установлены как на V6 агрегат (с каждой стороны по своей турбине), так и на рядную версию (здесь могут разделить выпускной коллектор, например с двух цилиндров дует одна, с других двух другая).
Минусами можно назвать высокую стоимость и работы по настройки такой системы. Ведь здесь применяются тонкие настройки перепускных клапанов. Поэтому установка обусловлена на дорогих спортивных машинах, таких как ТОЙОТА СУПРА, либо на авто элитного класса – МАЗЕРАТТИ, АСТОН МАРТИН и т.д.
ТВИН-ТУРБО (TWIN-TURBO)
Здесь в основном стоит задача не избавиться от «турбоямы», а максимально повысить производительность (нагнетание сжатого воздуха). Как правило работает такая система на высоких оборотах, когда один нагнетатель не может справиться с возросшей на него нагрузкой, поэтому устанавливается (параллельно) еще один такой же. Вместе они нагнетают воздуха в два раза больше, что даете почти такой же прирост производительности!
Но как же «турбояма», что она здесь свирепствует? А вот и нет, ее тоже эффективно побеждают только немного другим способом. Как я уже говорил, малые турбины гораздо быстрее раскручиваются, так вот представьте – меняют 1 большую, на 2 малых – производительность практически не падает (работают параллельно), а вот «ЯМА» уходит потому как реакция быстрее. Поэтому, получается, создать нормальную тягу, с самого низа.
Установка может быть как на рядные модели силовых агрегатов, так и на V-образные.
Производство и настройка намного дешевле, поэтому это строение применяется у многих производителей.
Турбина + компрессор
Это тоже можно назвать «БИ-ТУРБО» или «ТВИН-ТУРБО» — как хотите. По сути, и компрессор и турбо вариант, делают одну работу, только один (механический) намного эффективнее в низах, другой (от отработанных газов) — в верхах! Про различия наддувов читаем здесь.
Как правило, компрессор устанавливается на ременную передачу от коленчатого вала двигателя, поэтому максимально быстро раскручивается с ним. Тем самым позволяя избегать «ЯМЫ», а вот на высоких оборотах он бесполезен – тут уже вступает турбо вариант.
Этот симбиоз применяется на некоторых немецких машинах, большой плюс компрессора, что у него намного выше ресурс, чем у оппонента!
Сейчас небольшое видео, смотрим
ГОЛОСОВАНИЕ
Читайте наш АВТОБЛОГ, подписывайтесь на обновления.
(9 , 4,89 из 5)
Источник: http://avto-blogger.ru/dv/bi-turbo-i-twin-turbo.html
Учимся различать битурбо двигатели от твин турбо, чем они похожи и какие основные отличия
Сегодня расскажу, чем отличаются битурбированные двигатели и моторы с twin-турбо, для чего они нужны и почему многие люди их путают. Не будут углубляться в дебри терминологии и технологии, рассмотрим основные понятия, объясню на пальцах.
Зачем они нужны
Начнем с назначения, ведь есть уже турбомоторы, зачем придумывать что-то другое, тем более с разными названиями и путать простых автовладельцев? Все просто. Вспомните, когда обсуждались турбированные двигатели, упоминалась одна серьезная проблема – турбояма. Это потеря мощности при резком нажатии на акселератор при малых оборотах мотора. Кому интересно – почитайте, ссылка выше.
Для устранения этого недостатка, была разработана система с двумя турбинами – двойной турбонаддув. Когда устанавливается два турбонагнетателя, способные работать на разных режимах ДВС, на низких оборотах, средних и высоких. Одна вступает в работу на малых, низкой скорости выхлопных газов достаточно ей, чтобы выйти на свою максимальную мощность. Вторая включается на средних и высоких оборотах мотора.
На некоторых автомобилях роль первой турбины может играть компрессор. В чем разница между ним и турбокомпрессором подробно рассказывалось в отдельной статье, рекомендую почитать. Так вот, он нагнетает воздух в цилиндры при низких оборотах двигателя, а турбонагнетатель включается в работу на высоких. Так выравнивается полка мощности турбомотора, сглаживается турбояма.
Хочется отметить, что битурбомотор бывает в бензиновом и дизельном исполнении. Именно битурбированный дизель стал первопроходцем в этой технологии. Затем она перекачивал на бензиновые двигатели
В чем отличия битурбо от твинтурбо
Не только в названии. Кстати, из названия появляются первые различия. Они в конструкции этих систем. Приставка «Би» на английском означает «двойной», набор из двух элементов. В нашем случае – турбокомпрессоров.
Twin – близнец, перевод с английского языка. В нашем случае используются абсолютно одинаковые турбины. Их геометрические размеры, производительность идентичны. Что в первом случае, что во втором это двойной турбонаддув.
По принципу работу
Только двигатели битурбо используют две разные по производительности и размерам турбины. Одна предназначена для работы на низких оборотах мотора, а вторая на средних и высоких. При малых нагрузках силового агрегата, скорость отработанных газов низкая. Её будет достаточно, чтобы раскрутить крыльчатку маленького турбонагнетателя. Он выходит на номинальную производительность, нагнетая воздух в цилиндры. Силовой агрегат получает динамику и «не тупит» при разгоне.
С повышением оборотов двигателя, скорость выхлопных газов увеличивается. Маленькая турбинка не может обеспечить достаточным количеством воздуха цилиндры. В работу включается вторая. Через систему перепускных клапанов, отработанные газы начинают раскручивать большой турбонагнетатель, маленький отключается. Его производительности достаточно, чтобы дать необходимую мощность мотору в таком режиме.
Система твин-турбо использует две одинаковые турбины. Их применяют как для увеличения мощности, так и разделения потоков сжатого воздуха в разные цилиндры. Часто можно ее встретить в V-образных двигателях, на каждую головку свой турбонагнетатель.
Кроме этого, применяют для сглаживания турбоямы два турбонагнетателя меньшего размера. Их меньшая инерционность позволяет «раскручиваться» с самых «низов» ДВС. Их холодные части соединены в единый коллектор. По отдельности они имеют небольшую производительность, а параллельно – удвоенную. Такие твин-турбо системы называются параллельные.
Следующая разновидность – последовательный twin turbo. Это когда два одинаковых турбоагрегаты соединены последовательно, как по ходу движения выхлопных газов, так и по холодному воздуху. Этот вариант еще называют секвентальной турбосистемой.
Подобные схемы включения могут применяться как в двигателях битурбо, так и твин-турбо. По этому признаку они похожи, отличить их невозможно.
Недостатки Biturbo
- Дороговизна конструкции, сложность;
- Снижение надежности;
- Высокая стоимость обслуживания и ремонта.
Из минусов битурбированных двигателей можно выделить сложность и дороговизну конструкции. Нелегко соединить в параллельную работу две турбины разного размера, синхронизировать их.
Кроме этого в подобных конструкциях применяются дополнительные клапаны управления – это заслонки, сервоприводы. Все это повышает стоимость битурбо двигателей.
Наличие дополнительных систем управления, оборудования, увеличивает цену обслуживания и ремонта. Снижается надежность, так как перепускные клапана, например, могут заклинивать и т.д.
Twin-турбо этих проблем частично лишено, если оно применяется в классической компоновке – параллельно. В таком случае нет дополнительного оборудования, просто две одинаковые турбины работают совместно. Да, есть определенные сложности, но их меньше, чем в битурбо.
Вывод
В сети часто встречается подмена этих понятий. На многих сайтах, даже профильных, эти два типа двойного турбонаддува путают. Либо по незнанию, либо они просто так перемешались в современном мире, что их перестали отличать.
Чтобы прервать этот порочный круг, вы должны запомнить основное различие между двигателями битурбо и twin турбо:
Biturbo – система, в которой используется две разные по размерам и производительности турбины, в твин турбо – идентичные турбонагнетатели, абсолютно одинаковые.
Схемы присоединения могут совпадать, по этому признаку их делить нельзя, различий нет. Битурбированные системы могут быть как параллельного включения, так и последовательного. Это же касается твин-турбо.
Но последний тип двойного турбонаддува считается более простым, значит дешевым в конструкции, обслуживании и более надежным, чем битурбо двигатели. В турбомоторах могут применяться твин-скролл турбины, но это тема отдельного разбора. Если вам это будет интересно, я подробно разберу в другом обзоре.
Всем удачи на дорогах.
Источник: https://avtoyoutubb.ru/dvigateli-biturbo.php
7 главных минусов и 2 плюса турбомоторов
Атмосферный мотор засасывает воздух в цилиндры под действием разрежения, которое возникает, когда поршень движется к нижней мертвой точке. В большинстве случаев давление в цилиндре в конце хода впуска чуть ниже атмосферного. И вот с этим количеством воздуха и осуществляется рабочий цикл мотора. Наддувный двигатель получает на входе в цилиндр воздух, сжатый компрессором до определенного давления, а потому его в цилиндр войдет больше, чем у мотора со свободным всасыванием. Больше воздуха — больше кислорода, а значит, и топлива сгорит больше, и мощность при том же рабочем объеме поршневой части будет выше (или мотор компактнее при сохранении мощности).
Поскольку воздух в компрессоре подогревается, температуру перед подачей в цилиндр желательно снизить. Это делает специальный охладитель — интеркулер. Компрессоры могут использоваться разных типов — и с приводом от коленвала, и волновые обменники давления, но наиболее распространен турбонаддув. Последний способ использует энергию выхлопных газов для вращения центростремительной турбины, а сидящее на том же вале колесо центробежного компрессора обеспечивает сжатие воздуха перед подачей в цилиндры.
Наддувный двигатель потребляет сжатый в компрессоре и охлажденный в интеркулере воздух. И тот же мотор является источником газов с высокими температурой и давлением, которые вращают турбину.Наддувный двигатель потребляет сжатый в компрессоре и охлажденный в интеркулере воздух. И тот же мотор является источником газов с высокими температурой и давлением, которые вращают турбину.
Как видим, конструкция наддувного мотора сложнее, чем атмосферника. Отсюда и первый недостаток турбомоторов…
1. Низкая надежность
Наддувные двигатели состоят из большего числа агрегатов, а надежность многокомпонентной системы всегда ниже, чем у более простой. Нагрузки на детали больше из-за большей литровой мощности. Да и конструкционные материалы в автомобильной промышленности используются преимущественно недорогие. Это же вам не аэрокосмическая отрасль…
К примеру, у турбокомпрессора есть система регулирования давления наддува, которая порой может заедать и отказывать. У редакционного Volkswagen Golf уже дважды при пробеге 80 000 и 100 000 км полностью теряла подвижность тяга привода клапана перепуска газов мимо турбины.
2. Недостаточный ресурс
Все мы вздыхаем по моторам-миллионникам конца прошлого века. Сейчас ресурс мотора в 400 000 км считается огромным достижением, а в прошлом он был нормой. Турбодвигатели современных автомобилей до таких пробегов не доживают. Турбокомпрессоры на бензиновых моторах редко ходят больше 150 000 км, а начавшая «хандрить» турбина вскоре может погубить и поршневую часть. Ведь турбокомпрессор может «выхлебать» весь запас моторного масла — в поддоне и поршневой части ничего не останется.
А еще многие производители с целью сэкономить «апгрейдят» атмосферные моторы до турбонаддувных, не особо заморачиваясь усилением некоторых деталей. Соответственно, высокие нагрузки на поршневую часть при небольшом усилении конструкции приводят к снижению ресурса.
3. Необходимость более частого и высококвалифицированного обслуживания
Многие производители для своих моделей с турбомоторами снизили периодичность ТО с 15 000 до 10 000 км. Так поступили, к примеру, Geely и Haval.
Наддувный мотор сложнее в обслуживании и особенно в диагностике. У него гораздо больше количество дополнительных соединений в системе турбонаддува. Потерять герметичность могут: подвод и отвод воздуха, подвод и отвод отработанных газов, системы подачи масла под давлением и его слива, а также подачи охлаждающей жидкости. Все это требует дополнительного внимания и опыта у сервисмена во время ТО.
4. Дорогой ремонт
Ремонт наддувного мотора всегда обходится дороже. Даже если турбокомпрессор в ремонтной фирме и не трогали, то прайс на восстановление двигателя все равно выше. Просто потому, что разбирать-собирать все перечисленные выше системы дольше и сложнее. А если предстоит замена турбокомпрессора, то готовьтесь выложить от 60 000 руб. Восстановление узла может потребовать половину этой суммы.
5. Обязательно применять хорошее топливо и смазки
Все современные моторы довольно требовательны к качеству топлива и моторного масла. Но если атмосферник на некачественных жидкостях «умрет» не сразу, то жизнь форсированного наддувного мотора будет измеряться минутами. Кроме того, расход даже самого дорогого масла у наддувного мотора будет выше, чем у большинства атмосферников.
Отдельного разговора требует расход топлива. Любой маркетолог, желающий продать вам машину с турбомотором, будет уверять, что она экономичнее, чем автомобиль с атмосферным двигателем. В теории так и есть. Но ведь турбомашина — это «великий провокатор». Некоторые автомобилисты сознательно выбирают турбодвигатель, чтобы ездить напористо и агрессивно. В этом случае расход будет не меньше, а даже больше, примерно на 30%, чем у спокойного водителя. Для неторопливого водителя мощность турбомашины может показаться избыточной, а повышенные затраты на содержание, (частые ТО, дорогие бензин и масло) — неоправданными.
6. Необходимость дополнительного охлаждения
Недаром многие сигнализации имеют опцию «турботаймер». Это устройство позволяет не глушить разогретый турбомотор сразу после остановки машины, а дает двигателю поработать на холостом ходу для охлаждения — прежде всего турбины. Похожий алгоритм у некоторых мощных автомобилей штатно заложен в блок управления двигателем. Без этого в остановившейся, но раскаленной докрасна турбине масло закоксуется, нарушив герметичность уплотнений. В итоге значительно вырастет расход масла на угар.
7. Проблемы с ликвидностью
Обо всех вышеперечисленных неприятностях осведомлены, в той или иной степени, многие автолюбители. Именно поэтому большинство предпочтет на вторичном рынке машину с атмосферным двигателем. А заезженные «турбозажигалки» приобретать будут, в основном, молодые поклонники всех серий «Форсажа».
Впрочем, есть у турбомоторов и неоспоримые плюсы.
1. Отличная характеристика крутящего момента
Разгон автомобиля — хоть с механической коробкой передач, хоть с автоматом — очень зависит от того, насколько быстро мотор из режима холостого хода сможет достигнуть оборотов максимальной мощности. А мощность, как известно, пропорциональна произведению оборотов коленвала на крутящий момент. Именно поэтому нужно, чтобы мотор на как можно более низких оборотах выдавал большой крутящий момент.
Наддувный мотор проектируют так, что турбокомпрессор обеспечивает довольно высокое давление наддува очень «рано», при небольших оборотах коленвала. В результате мы получаем большой крутящий момент на небольших оборотах. Далее момент увеличивать нельзя во избежание чрезмерных нагрузок на детали мотора. Начинает работать перепускной клапан, направляя часть выхлопных газов в обход турбины. Так производительность турбокомпрессора ограничивается, а на кривой крутящего момента появляется горизонтальная полка. Вот за такую характеристику турбомоторов их и любят, особенно активные водители.
Мощность и крутящий момент атмосферных двигателей ВАЗ (слева) и китайского турбомотора JLE-4G18TD.Мощность и крутящий момент атмосферных двигателей ВАЗ (слева) и китайского турбомотора JLE-4G18TD.
2. Низкий расход топлива
У атмосферного двигателя значительная часть энергии сгоревших газов теряется вместе с горячими выхлопными газами. Наддувный двигатель использует температуру и давление выпускных газов, срабатывая их в турбине. Меньше энергии пропадает зря, значит, больше используется для движения автомобиля. Но, повторюсь, при условии спокойной манеры вождения.
***
Турбодвигатели совершенствуются и захватывают все новые модельные ряды автомобилей самых разных производителей на всех континентах. Вначале они оккупировали дороги старушки Европы. Япония давно и массово загружает ими внутренний рынок. США и Корея немного более сдержанны в распространении турбированных двигателей. Зато Китай в последнее время массово пересаживается на турбонаддув. Так что за наддувными двигателями будущее. Если, конечно, их не вытеснят электрокары.
- Самые надежные двигатели (из тех, что еще продаются) мы собрали тут.
фирмы-производители
Источник: https://www.zr.ru/content/articles/919836-7-glavnykh-nedostatkov-i-2-plyus/
Как работает система турбонаддува TwinTurbo
Основной проблемой использования турбонаддува является инерционность системы или возникновение так называемой “турбоямы” (временная задержка между увеличением оборотов двигателя и фактическим увеличением мощности). Для ее устранения была разработана схема с использованием двух турбокомпрессоров, получившая наименование TwinTurbo. У некоторых производителей эта технология также известна как BiTurbo, но отличия конструкций заключается только в коммерческом названии.
Особенности работы Твин Турбо
Система наддува TwinTurbo
Системы с двумя компрессорами применяются и на дизельных, и на бензиновых двигателях. Однако для последних требуется использование более качественного топлива с высоким октановым числом, что позволяет снизить вероятность детонации (негативное явление возникающее в цилиндрах двигателя, разрушающее цилиндро-поршневую группу).
Помимо основной функции уменьшения времени турбозадержки, схема Твин Турбо позволяет получить более высокую мощность двигателя автомобиля, снижает расход топлива и сохраняет максимальный крутящий момент в широком диапазоне оборотов. Это достигается использованием различных схем подключения компрессоров.
Виды схем наддува с двумя турбокомпрессорами
В зависимости от способа подключения пары турбокомпрессоров различают три основных схемы системы TwinTurbo:
- параллельная;
- последовательная;
- ступенчатая.
Параллельная схема подключения турбин
Предусматривает подключение двух одинаковых турбокомпрессоров, работающих параллельно (одновременно). Сущность применения конструкции заключается в том, что две меньших по объему турбины имеют меньшую инерционность, чем одна большая.
Перед подачей в цилиндры воздух, нагнетаемый обоими турбокомпрессорами, поступает в один впускной коллектор, где смешивается с топливом и распределяется в камеры сгорания. Эта схема чаще используется на дизельных двигателях.
Последовательное включение
Последовательная схема подключения Твин Турбо
Последовательно-параллельная схема предполагает установку двух одинаковых турбин. Одна работает постоянно, а вторая подключается при повышении оборотов двигателя, увеличении нагрузки или других особых режимах. Переключение режимов работы осуществляется с помощью клапана, приводимого в действие ЭБУ двигателя автомобиля.
Эта система прежде всего ориентирована на устранение турбоямы и получение более плавной динамики разгона автомобиля. По аналогичной схеме работают системы с тройным турбонаддувом TripleTurbo.
Ступенчатая схема
Ступенчатая схема Битурбо
Двухступенчатый турбонаддув представляет собой два турбокомпрессора разного размера, которые установлены последовательно и подключены к впускному и выпускному каналам. Последние оснащены перепускными клапанами, регулирующими потоки воздуха и отработавших газов. Ступенчатая схема имеет три режима работы:
- При малых оборотах двигателя клапаны находятся в закрытом положении. Отработавшие газы проходят через обе турбины. Поскольку давление газов низкое, крыльчатки большой турбины практически не вращаются. Воздух проходит через обе ступени компрессоров, получая минимальное избыточное давление.
- При увеличении оборотов двигателя клапан отработавших газов начинает открываться, что приводит в движение большую турбину. Больший компрессор сжимает воздух, после чего он направляется на малое колесо, где производится дополнительное сжатие.
- Когда двигатель работает на максимуме оборотов, оба клапана полностью открыты, что направляет поток отработавших газов напрямую на большую турбину, воздух проходит через больший компрессор и сразу отправляется к цилиндрам двигателя.
Ступенчатая схема наиболее часто применяется для автомобилей с дизельными двигателями.
Преимущества и недостатки двойного турбонаддува
В настоящее время TwinTurbo в основном устанавливается на мощных автомобилях. Применение этой системы позволяет добиться такого преимущества как обеспечение максимального крутящего момента в широком диапазоне оборотов двигателя. Также благодаря двойному турбонаддуву достигается увеличение мощности при относительно небольших габаритах двигателя, что делает его более экономичным по сравнению с атмосферным двигателем.
К основным недостаткам БиТурбо можно отнести высокую стоимость, что обусловлено сложностью конструкции. Так же, как и с классической турбиной, системы с двумя турбокомпрессорами нуждаются в более бережном отношении, качественном топливе и своевременной замене масла.
(3 3,67 из 5)
Загрузка…
Вам также может понравиться
Источник: https://TechAutoPort.ru/dvigatel/vpusknaya-sistema/twinturbo.html
TwinPower Turbo на моторах BMW, чем они отличаются и в чем их преимущества
В пути от базовой серии до спортивного суперкара M5 бренд BMW всегда бросал вызов законам автомобильной логики. Автомобили, которые казались невероятно быстрыми на бумаге, превосходили все ожидания при запуске в серию и при реальном знакомстве. Многие, если не все двигатели BMW работают, словно по волшебству, но когда открывается капот очередного баварского шедевра, под ним не оказывается древних германских рун, только на защите силового агрегата красуется надпись «TwinPower Turbo».
BWM всегда проповедовал политику турбонаддува и заднего привода. Сегодня не встретить силового агрегата марки, который не имеет хотя бы одного турбонаддува, не говоря уже о серии высокопроизводительных дизелей с трех- и четырехтурбинными установками.
TwinPower играет важную роль, когда речь идет об эффективных и динамичных бензиновых и дизельных двигателях BMW. Но что такое TwinPower Turbo в реальности и что он может предложить автомобильному миру?
Когда речь заходит о бензиновых двигателях, TwinPower Turbo, то есть три компонента, которые применяются во всех модификациях, от 3 до 12 цилиндров:
• вальветроник;
• прямой впрыск топлива;
• турбонаддув.
Турбодизели оборудуются системой впрыска Common Rail.
Valvetronic – электронный переменный клапан. Это технология, разработанная BMW, которая позволяет оптимизировать потребление топлива путем регулирования подъема клапана. Разработчики утверждают, что эта технология сама по себе способна уменьшить расход топлива на 10%.
Вольветроник – мощная электронная технология. Она обеспечивает непрерывный и точный контроль над подъемом впускного клапана. Это означает, что когда владелец баварца нажимаете педаль газа, запускается контроль открытия клапанов, вместо обычной дроссельной заслонки открываются системы впуска.
В системе используется набор рокеров, управляемый электронным распределительным валом. Поскольку она способна регулировать клапаны от полностью открытого до почти закрытого состояния, двигатель не нуждается в оборотах для увеличения нагрузки.
Valvetronic был впервые представлен в 2001 году на модели серии 316ti и использовался в основном для двигателей с наддувом, ориентированных на массовую продажу, таких как:
• N42 straight-4;
• N52 straight-6.
Но система не использовалась на двойном турбонаддуве N54. Вместо этого турбонаддув N55 straight-6, заменивший его в 2009 году с такими же характеристиками, как и у N74 twin-turbo V12 топовой 7-й серии, был оснащен системой вальветроник. После этого технология применялась практически на всех автомобилях BMW.
High Precision Injection – системы непосредственного впрыска с центральными многозубчатыми инжекторами. Они постепенно заменили технологии, использовавшиеся 2000-х годах. Двигатели с наддувом и с турбонаддувом использовали пьезоинжекторные форсунки. Однако новый 6-цилиндровый турбодвигатель BMW N55, запущенный в производство с 2010 года, устанавливавшийся в моделях 335i, 535i, X3, X5 и X5, использует систему впрыска соленоида, разработанную Bosch. Эта система была выбрана баварцами, чтобы сохранить конкурентоспособные цены на североамериканском автомобильном рынке.
Название TwinPower Turbo сбило с толку многих автовладельцев. Они не понимали, что находится под капотами их BMW. В связи с этим на компанию был подан судебный иск за обман большого количества людей. В документе TwinPower Turbo был назван «ложным двойником» и говорилось, что баварцы запустили рекламную кампанию с целью обмануть покупателей. Все дело в слове «двойной», которое присутствует в названии. Его наличие не было гарантией оснащения двигателей двумя турбонаддувами.
Первоначально TwinPower Turbo появился на двухпролетном одиночном турбонаддуве (устанавливался на 5 серию Gran Turismo в 2009 году, а в 2010 году появились модели E90 335i, 135i, X3 и X5), начиная с N55 (шестицилиндровым двигателем с турбонаддувом) и N74 (6-литровый V12 агрегат с двумя турбонаддувами). Им оснащались модели 760i и 750Li 2009 года выпуска. Двухскоростной турбонаддув – основная технология для TwinPower Turbo BMW.
Конструкция с двумя турбинами начинается с выпускного коллектора, разделяющего выхлопные газы. Они проводятся через разные спирали, называемые «свитками». Турбо имеет два сопла разных диаметров, они нужны для обеспечения быстрого отклика силового агрегата. BMW называет специальный выпускной коллектор собственной разработки Cylinder-Bank Comprehensive Manifold или CCM.
Следует напомнить, что современные двигатели BMW TwinPower не обязательно оснащаются двухтактными турбокомпрессорами. Зато у них есть отличный выпускной коллектор, который улавливает больше выхлопных газов для подачи в турбины, что обеспечивает мощность без запаздывания.
Трехцилиндровая революция: B37 и B38 TwinPower Turbo. Бензин и дизель
Очередным революционным решением BMW стали трехцилиндровые бензиновые и дизельные двигатели, которые могут соперничать с модификациями, имеющими большее количество цилиндров. Они построены по модульной системе, где используются такие же 500-сантиметровые цилиндры совместно с технологией TwinPower Turbo мощностью 120–220 лошадиных сил.
Известно, что дизельные агрегаты получили обозначение B37, а бензиновые — B38. Первые образцы установлены на гибридном спортивном автомобиле i8 серии FWD 1 и MINI. Они также используются сериями RWD 1 и 3 в качестве стартовых модификаций модельного ряда двигателей.
Лучшие 4-цилиндровые турбо в мире
В 2004 году началось производство двигателя с прямым впрыском, разработанного совместно с PSA Peugeot Citroen. В 2011 году конструкторы BMW разработали модель N13, в которой был изменен корпус масляного фильтра — он устанавливался продольно. Двигатель был установлен на модели 114i, 116i и 118i.
Возможно, перспективным мотором для BMW сейчас является N20. Его рабочий объем — 2.0 литра, есть турбонаддув с четырьмя цилиндрами. Мотор также имеет надпись «TwinPower Turbo» на крышке. Этот двигатель заменил менее мощного собрата стрит-6 в моделях «20i», «28i», является жизнеспособной и очень эффективной его альтернативой.
Существует 2 модификации N20. Версия 184 PS является менее мощной и доступна для X1, xDrive20i, F30 320i, 520i, базового Z4 sDrive20i. Топовый вариант этого 2,0-литрового двигателя TwinPower обладает мощностью 245 л.с., используется в моделях F30 328i, 528i, X1, X3 и Z4.
Straight-6 TwinPower Turbo: N55
Когда технология TwinPower Turbo устанавливается на 6-цилиндровый двигатель, его преимущества становятся очевидными. Мотор с двумя турбинами N55 заменил более дорогой агрегат N54 в 2009 году. Но обе модификации очень похожи друг на друга. Сопоставимый выход на собственный 4-литровый V8 BMW, с более легким блоком и более низким крутящим моментом, еще больше загар, который можно найти в E92 M3 с мощным S65 V8.
Мощность N55 составляет 302 л.с., крутящий момент — 300 Нм (400 Нм). Он устанавливается в моделях 335i, 135i и всех модификациях SUV. Существует еще более мощная версия под индексом N55HP, мощностью 315 л.с., крутящим моментом 450 Нм. Этой версией комплектуются топовые модели, такие как 640i, 740i, и даже спортивный сверхтяжелый хэтчбек M140i.
Дебют двигателя состоялся в 2009 году, его начали устанавливать на пятую серию GT. Оборудованный продвинутой версией 6-цилиндрового двигателя, BMW 535i Gran Turismo способен разгоняться до 100 км/ч всего за 6,3 секунды. Максимальная скорость этого зверя ограничена 250 км/ч. Что касается расхода топлива, то BMW 535i GT потребляет 8,9 литра на 100 километров. Показатель выброса CO2 – 209 г/км.
Сергей Василенков
Источник: https://1gai.ru/publ/518983-twinpower-turbo-na-motorah-bmw-chem-oni-otlichayutsya-i-v-chem-ih-preimuschestva.html
Twin-Turbo и Bi-Turbo — в чем разница?
Автомобиль-механизм, который значительно облегчает жизнь человеку, экономит время и дает определенный комфорт. Современные авто могут быть абсолютно разного назначения и модификации. Для любителей спорткаров и им подобных силовых установок, производители выпускают агрегаты с мощными моторами. К таки относят двигатели с типом турбонадува Twin-Turbo и Bi-Turbo.
Что такое система Twin-Turbo?
Работа турбины осуществляется определенным образом. Воздух снаружи автомобиля нагнетается и закачивается в цилиндры двигателя. Но, после того как рост оборотов двигателя увеличивается, работа турбины утрачивает свою эффективность. Для устранения подобной особенности функционирования турбины, разработчики спроектировали систему состоящую из двух турбин.
Twin-Turbo
Работа турбин может осуществляться в режиме индивидуально подобранном владельцем автомобиля. Они могут работать как параллельно, так и последовательно. Во втором случае одна турбина подключается в момент запуска двигателя и набора оборотов, а вторая-подключается в момент падения эффективной работы первой. Обоюдная работа, в свою очередь, обеспечивает огромный прирост в производительности и работе двигателя.
Система Twin-Turbo может работать и устанавливаться на двигателях V-образного типа, также подойдут и рядные моторы, особого отличия в этом факте нет. Основной целью работы подобной установки-увеличение производительности автомобиля и быстрый набор скорости.
Система обладает определенным перечнем недостатков:
- Длительная ответная реакция на педаль акселератора.
- Усиленная эксплуатация второй,более мощной турбины и ее преждевременный износ.
- Присутствие турбоямы, состояния в котором, турбины не имеют эффективности.
На модели автомобилей,которые участвуют в гонках или драг-рейсинге нередко устанавливается и 3-5 турбин согласно вышеуказанной схеме. На серийные автомобили таких»излишеств» автомобильная промышленность не предусматривает.
Двигатели с системой Bi-Turbo
Bi-Turbo также подразумевает наличие двух турбин, однако если в предыдущем варианте турбины были одинаковыми, то Би-турбо включает в себя наличие обычной турбины и увеличенной, более мощной. Турбины обладают последовательным способом включения, то есть на малых и средних оборотах работает первая турбина, на больших оборотах – увеличенная. Благодаря такой конфигурации обеспечивается ровный разгон автомобиля.
В свою очередь, устанавливаться Bi-Turbo также может и на V-образные двигатели, и на рядные.