Тяга стабилизатора передней подвески
Подвеска легкового автомобиля – сложная многосоставная конструкция, требующая к себе особенного внимания. Без периодического обслуживания подвеска не сможет обеспечивать безопасного и комфортного движения автомобиля. Различные элементы данной конструкции имеют свой собственный ресурс и после определенного срока эксплуатации подлежат замене.
Каждому ответственному водителю необходимо владеть минимальными знаниями о конструкции подвески, ее основных элементах, возможных неисправностях и сроке замены основных деталей. Даже если обслуживание своего авто вы доверяете автомастерам, такие знания не будут для вас лишними.
Одной из основных частей подвески практически любого легкового автомобиля является стабилизатор поперечной устойчивости, который отвечает за устойчивость автомобиля при динамических нагрузках, таких как разгон, торможение или выполнения маневра. Разберем подробнее один из элементов этого узла – а именно передние стойки стабилизатора.
Для чего нужны стойки стабилизатора
Чтобы разобраться, на что влияет стойка стабилизатора, необходимо понять, какую функцию выполняет сам стабилизатор. Его предназначение кроется в самом его названии – стабилизация автомобиля.
При выполнении поворотов на автомобиль начинает действовать центробежная сила, которая создает определенный крен, то есть наклоняет машину относительно горизонта. В такие моменты подвеска автомобиля испытывает большие нагрузки.
Причем нагрузки эти распределены неравномерно: внешняя сторона подвески при повороте нагружается намного больше внутренней. Здесь в дело вступает стабилизатор. Он распределяет эти нагрузки на обе стороны, чтобы они нагружались равномерно.
Вот как выглядит стойка стабилизатора передней подвески:
Передняя стойка стабилизатора автомобиля
Стойка (тяга) стабилизатора служит элементом кинематической связи кузова автомобиля и подвески, то есть обеспечивает подвижную фиксацию стабилизатора. Сколько же стоек стабилизатора в передней подвеске? Как правило – 2 (на левую и правую полуось).
Принцип работы
Для того, чтобы понять принцип работы этого элемента подвески, необходимо обратиться к его конструкции. На подавляющем большинстве автомобилей тяга стабилизатора представляет собой шток размером от 5 до 25 см на концах которого выполнены шарнирные крепления (на некоторых моделях стойки выполняются с бесшарнирными креплениями).
Если разобраться в конструкции стойки и ее назначении, принцип работы этого элемента становится очевидным. Своим ходом тяга обеспечивает ограниченную подвижность связи стабилизатора и остальных элементов конструкции подвески. Тяги работают совместно со стабилизатором: благодаря своей конструкции они либо прижимают, либо вывешивают колесо. Таким образом происходит уменьшение угла крена автомобиля. Вот для чего нужна стойка стабилизатора.
Длина элемента составляет от 5 до 25 см, в зависимости от типа автомобиля и его подвески.
Обращаем внимание, что конструкция стойки не бывает цельной. Крепление шарнира производится с помощью сварки, а в месте крепления образуется так называемая «шейка». Такое ухищрение необходимо для того, чтобы при критической нагрузке на стойку было известно место ее перелома, в противном же случае стойка могла бы повредить днище.
Типы стоек стабилизатора
Во-первых, стойки стабилизатора разделяют на передние и задние, в зависимости от осей, на которых они расположены. На задних осях автомобилей стабилизаторы имеются не всегда, в то время как передними стабилизаторами оснащены практически все современные автомобили.
Во-вторых, различают системы активной и пассивной стабилизации. Если в случае с пассивным стабилизатором все понятно (классическая цельнометаллическая конструкция с постоянной жесткостью), то в случае с активным стабилизатором все немного интереснее.
Современные технологии позволяют менять жесткость стабилизации в зависимости от типа дорожного покрытия и скорости движения (максимальная жесткость для поворотов на больших скоростях, средняя – на грунтовых дорогах, при езде по бездорожью стабилизатор может вообще отключаться). Существует несколько способов достижения различной жесткости:
- применение гидроцилиндров вместо стоек;
- применение активного привода;
- и применение гидроцилиндров вместо втулок.
Элементы стойки стабилизатора
Проверка износа стоек стабилизатора
Существуют определенные «симптомы», по которым автовладелец может понять, что пришло время менять стойки стабилизатора. К ним можно отнести:
- уход машины с курса при свободном рулевом управлении (если убрать руки с руля), но это также может говорить и о других неисправностях автомобиля;
- характерный стук при езде по пересеченной местности и при поворотах;
- правая или левая сторона автомобиля выше другой (крен при стоянке или прямолинейном движении);
- раскачивание при начале движения (трогании), торможении (замедлении) или выполнении поворотов;
- значительное ухудшение управляемости машиной.
Существуют несколько способов проверки износа тяг переднего стабилизатора, чтобы убедиться в его пригодности:
- необходимо вывернуть колеса до упора, взяться рукой за тягу стабилизатора и попытаться расшатать ее из стороны в сторону. Если при этом будет слышен стук или стойка будет поддаваться – это сигнал о ее неисправности (наличие люфта – недопустимо!);
- практически аналогичную проверку можно выполнить на специальной яме, взявшись за сам стабилизатор.
Ели при движении он будет шататься или стучать – это еще один сигнал о поломке. Также последние два способа можно использовать для проверки исправности стоек сразу после их замены.
Замена стоек
Многие задают вопрос: можно ли ездить без стабилизатора передней стойки? При такой езде происходит неравномерная нагрузка элементов подвести автомобиля, а также ухудшение или даже полная потеря управляемости (может возникнуть избыточная управляемость и пр.), крены при поворотах увеличатся, машина станет менее стабильной, поэтому эксперты настоятельно советуют осуществлять замену стоек вовремя и по регламенту, если их наличие предусмотрено конструкцией автомобиля. Втулки и стойки переднего стабилизатора советуют менять вместе.
Процедура замены стоек переднего стабилизатора не представляет из себя ничего сверхъестественного, поэтому если вы решили не отправляться на станцию технического обслуживания, а заменить тягу самим, просто следуйте нижеизложенной инструкции.
Для начала необходимо позаботиться о технике безопасности – ведь машину придется поддомкрачивать. Необходимо установить ручной тормоз, а также противооткатные упоры перед тем, как поднимать машину. Необходимо, чтобы автомобиль имел еще какую-либо опору, кроме домкрата. Затем:
- шестигранником зафиксировать полуось от вращения (прокручивания), снять гайку крепления;
- убрать упорную шайбу, ослабить гайку штока (опытные мастера советуют провернуть гайку на пол-оборота);
- поднять с обеих сторон перед автомобиля и установить опоры;
- на креплении суппорта открутить верхний болт, затем ослабить нижний;
- отвести суппорт в сторону;
- ослабляем накидным ключом нижние гайки, болты креплений, придерживая гаечным ключом сзади;
- вытащить болты (для облегчения процесса можно несильно постукивать молотком). Освобождаем стойку от крепления. На некоторых автомобилях возникает необходимость высвобождения тормозных шлангов из креплений.
Монтаж новой стойки осуществляется ровно таким же способом, только в другом порядке. Также эксперты советуют менять передние тяги попарно для равномерной выработки ресурса.
Как выбрать стойки
Одним из основных параметров стоек стабилизатора является их размер. Необходимо выбирать новые тяги таким образом, чтобы размеры полностью совпадали. Иначе это может повлечь непредсказуемые последствия в ходе эксплуатации автомобиля.
Но даже зная необходимый размер, выбор тяг остается крайне большим. Оригинальные запчасти иногда имеют очень высокую стоимость, рассчитаны, как правило, на условия эксплуатации, отличные от окружающих нас (к примеру, если вы владелец европейской иномарки, то очевидно, что обещанный производителем ресурс рассчитан на поездки по ровным европейским дорогам, а не по нашему отечественному бездорожью). Поэтому люди часто прибегают к покупке аналогов.
При покупке аналогов советуем обращать внимание на страну-производителя. Зачастую на детали информация о стране упаковки делается крупнее, чем о стране производителе. Это может ввести покупателя в заблуждение.
Наиболее часто на рынке встречаются предложения следующих компаний-производителей, зарекомендовавших себя: LEMFORDER (Германия), TOPRUN (Германия-Китай), STR (Южная Корея), Линкс Мастер (Россия).
Заключение
Таким образом, тяги (стойки) переднего стабилизатора являются важной и необходимой частью исправной системы подвески любого современного автомобиля. Разобравшись в их конструкции и предназначении, мы выяснили, на что влияют стойки стабилизатора в машине:
- на комфорт водителя и его пассажиров (исправные тяги обеспечивают плавный старт и торможение);
- на управляемость (уменьшаются крены при поворотах, машина становится более «послушной»;
- конечно же, на безопасность вождения.
Источник: https://tolkavto.ru/remont-i-obsluzhivanie/podveska-i-rudevoe/tyaga-stabilizatora-perednej-podveski.html
Амортизаторы и стабилизатор поперечной устойчивости
Амортизаторы. Наибольшие удобства при движении автомобиля достигаются при наличии мягкой подвески. Удары и толчки, которые испытывают колеса автомобиля при движении по неровной дороге, передаются на раму тем меньше, чем мягче рессоры. Чем длиннее рессора и чем большее число листов меньшей толщины в нее входит, тем она мягче.
Но мягкие рессоры обладают существенным недостатком — их колебания, имеющие большую амплитуду, затухают очень медленно. Колебания рессор гасятся за счет трения между их листами. Для более быстрого гашения собственных колебаний рессор и повышения их долговечности на автомобиле устанавливают специальные устройства, называемые амортизаторами.
Амортизаторы гидравлического типа ставятся на всех легковых п большинстве грузовых автомобилей.
Сопротивление колебательным движениям рамы в гидравлическом амортизаторе создается путем перекачивания жидкости через небольшие отверстия в его корпусе. Увеличение скорости относительных перемещений оси и рамы вызывает резкое возрастание сопротивления амортизатора.
Для заполнения амортизаторов применяются специальные жидкости с минимальным изменением вязкости в зависимости от температуры (например, веретенное масло АП по ГОСТу 1642-50 или смесь 60% трансформаторного масла и 40% турбинного масла Л).
Рекламные предложения на основе ваших интересов:
Колебание рамы можно представить себе состоящим из двух движений? хода сжатия рессоры, когда рама и ось сближаются, и хода отбоя, когда рама и ось расходятся. Амортизатор одностороннего действия гасит колебания лишь во время хода отбоя. Амортизатор двустороннего действия способствует более плавной работе подвески, так как он поглощает энергию колебаний как при отбое, так и при сжатии. Вследствие этого амортизаторы двустороннего действия почти полностью вытеснили амортизаторы одностороннего действия (амортизаторы такого типа применялись на автомобилях «Москвич-401») и устанавливаются на большинстве современных автомобилей.
Сопротивление, создаваемое амортизатором двустороннего действия, неодинаково при сжатии и отбое. Сопротивление при сжатии составляет 20—50% сопротивления при отбое, так как необходимо, чтобы амортизатор гасил в основном свободные колебания подвески при отбое. В подвесках легковых автомобилей и автобусах ставится четыре амортизатора, а в подвесках грузовых автомобилей — два (в передней подвеске).
Амортизаторы бывают рычажные и телескопические.
На рис. 1 показано устройство рычажного амортизатора двустороннего действия автомобиля ГАЗ-66. В чугунном корпусе амортизатора вверху помещается резервуар, а внизу — цилиндр, имеющий две полости, из которых правая работает при ходе сжатия, а левая — при ходе отбоя.
Рис. 1. Рычажный амортизатор двустороннего действия:
А — клапан сжатия; Б — клапан отбоя; 1 — вал; 2 — крышка цилиндра; 3 — винт; 4 — пружина; 5 — опорный сухарь; 6 — кулак; 7 — поршень; 8 — перепускной клапан; 9 — пружина перепускного клапана; 10 — рычаг; 11 — отверстие во фланце; 12 — пробка наливного отверстия; 13 — пробка клапана отбоя; 14 — пробка клапана сжатия; 15 и 16 — пружины клапана сжатия; 17 и 19 — клапаны; 18 — окно клапана отбоя; 20 — пружина клапана отбоя; 21 — стержень клапана отбоя
Полости связаны между собой каналами через клапаны сжатия А и отбоя Б. Цилиндр с торцов закрыт крышками. Корпус амортизатора крепится болтами к лонжерону рамы.
Клапан сжатия, установленный под пробкой, представляет собой стержень с утолщенной частью и тарелкой, нагруженный короткой стальной пружиной и более длинной, но слабой пружиной. Неподвижный направляющий стержень клапана отбоя имеет на рабочей поверхности лыски. Пробка служит опорой для пружины, прижимающей к седлу конусную тарелку трубчатого клапавд с прямоугольным окном.
Амортизаторную жидкость заливают в амортизатор через отверстие, закрываемое пробкой.
Внутри цилиндра амортизатора помещены два поршня, имеющие в торцах опорные стальные сухари, между которыми установлен кулак. Этот кулак сидит на мелких шлицах вала, на выходящем из корпуса амортизатора конце которого установлен рычаг, связанный тягой с передней осью автомобиля. Подшипниками валу служат две бронзовые втулки, а направляющей — пластинчатая пружина.
Как одно целое с корпусом отлит фланец, отверстия которого используются для крепления амортизатора на раме. Поршни имеют плоские перепускные клапаны с пружинами, упирающимися одним концом в клапан, а другим —-в стопорное кольцо. Поршни соединяются между собой винтами с пружинами. Цилиндр закрыт крышками со стальными и фибровыми прокладками под ними.
Утечке жидкости из корпуса амортизатора препятствует сальник.
Рис. 2. Схема движения жидкости в рычажном амортизаторе двустороннего действия:
а — при сжатии рессоры; б — при отбое рессоры
При ходе сжатия рычаг, поднимаясь вверх, поворачивает шаровой кулак, который перемещает поршень, а последний перегоняет жидкость из правой полости цилиндра в левую. Жидкость может проходить по двум направлениям: когда давление небольшое, она перетекает через щели, образованные лысками на стержне клапана отбоя; при повышенном давлении жидкость сжимает пружину клапана сжатия А настолько, что клапан отходит на величину зазора между пружиной и пробкой, и в месте косого среза образуется щель для прохода жидкости.
В случае более высокого давления пружина сжимается и проходное сечение для жидкости увеличивается. Таким образом, проходное сечение для жидкости, а следовательно, и сила сопротивления амортизатора меняются в зависимости от силы удара колеса о неровности дороги. При отбое жидкость проходит через щели, образованные лысками на стержне клапана Б и через окно, а при сжатии пружины — через кольцевой зазор между клапаном и его седлом.
Сопротивление амортизатора при отбое определяется жесткостью пружины и величиной проходных сечений, образованных лысками на стержне.
На рис. 2 показано движение жидкости в амортизаторе при сжатии п отбое рессоры.
Телескопические амортизаторы применяются на автомобилях ГАЗ-5ЗА, ЗИЛ-130, М-21 «Волга» и др. Цилиндр амортизатора и часть окружающего его наружного кожуха заполнены амортизаторной жидкостью. Внутри цилиндра помещается поршень со штоком, к концу которого приварена проушина; другая проушина приварена к кожуху. Шток амортизатора проушиной соединен с рамой или кузовом, а проушина кожуха соединена с балкой моста или рычагом колеса.
Сверху цилиндр амортизатора закрыт направляющей штока, а снизу — днищем, являющимся одновременно корпусом клапана сжатия. В поршне по окружностям разного диаметра равномерно расположены два ряда отверстий, из которых наружный ряд соединен сверху кольцевым
желобом и закрыт перепускным клапаном со слабой звездообразной пружиной, натяг которой можно регулировать шайбой, а внутренний — соединен снизу кольцевым желобом и закрыт клапаном отдачи. Клапан отдачи состоит из двух стальных дисков, прижимаемых к поршню через шайбу пружиной.
Кольцевой желоб соединяется с подпоршневой полостью несколькими дроссельными прорезями, сделанными на одном из дисков. В корпусе клапана сжатия также сделан ряд отверстий, закрываемых сверху перепускным клапаном, нагруженным пружинной звездочкой. На верхнем торце корпуса прорезаны две канавки. В корпусе помещается клапан сжатия с седлом и пружиной.
В верхней части клапана с двух сторон имеются две прямоугольные щели.
Рис. 3. Телескопический амортизатор МКЗ:
1 и 8 — проушины; 2 — направляющая; 3 — шток; 4 — цилиндр; 5 — кожух; 6 — поршень; 7 — корпус клапана сжатия; 9 — войлочное кольцо; 10 — резиновый сальник; 11 — обойма сальника; 12 — пружина сальника
Для работы амортизатора большое значение имеет герметичность его полостей. Поэтому верхний конец штока уплотняется резиновым сальником, заключенным в обойму и поджатым пружиной. Другой резиновый сальник установлен в направляющей штока и создает уплотнение между цилиндром и кожухом амортизатора. Сальник защищен от попадания пыли и грязи войлочным кольцом, установленным поверх обоймы,
Рис. 4. Схема работы телескопического амортизатора
Колебания, происходящие при работе рессорной подвески, вызывают возвратно-поступательные перемещения поршня в цилиндре.
На рис. 4, а показана работа амортизатора при плавном сжатии рессоры в случае наезда колеса на небольшое препятствие. Шток и поршень, опускаясь вниз, вытесняют жидкость из пространства под поршнем в пространство над поршнем через перепускной клапан.
Однако часть над-поршневого пространства занята штоком, поэтому оно не может вместить всю жидкость, вытесняемую из-под поршня. Вследствие этого часть жидкости, объем которой равен объему вводимой в цилиндр части штока, вытесняется в кольцевую полость трубы через дроссельные канавки на верхнем торце и отверстия в корпусе.
В это время под действием давления жидкости и пружины перепускной клапан остается закрытым.
При движении по плохой дороге в случае резкого сжатия рессоры жидкость не может быстро
пройти через малые сечения канавок. Вследствие наличия высокого давления жидкости под поршнем клапан сжатия открывается, и сопротивление амортизатора сжатию рессоры уменьшается.
В случае плавного отбоя рессоры поднимающиеся вверх шток и поршень вытесняют жидкость из надпоршневого пространства через отверстия в поршне и прорези в диске в пространство под поршнем. Дополнительно часть жидкости проходит из кожуха под поршень через перепускной клапан. При проходе жидкости через малые проходные сечения отверстий клапана создается гидравлическое торможение, вследствие чего гасятся колебания рессоры.
При резком отбое рессоры пружина сжимается под действием давления жидкости, диски клапана отдачи отходят от отверстий в поршне, в результате чего проходные сечения увеличиваются. В этом случае жидкость перетекает в пространство под поршнем без дросселирования.
Стабилизатор. Уменьшение крена кузова легкового автомобиля на повороте без изменения мягкости подвески достигается применением стабилизатора поперечной устойчивости. Он представляет собой стальной П-образный стержень, расположенный поперек автомобиля и скручивающийся при наклоне кузова. В укрепленных на лонжеронах рамы обоймах помещаются резиновые втулки, сквозь которые проходит П-образный стержень. Стойки, на которых закреплен этот стержень, установлены в чашках пружин.
Рис. 5. Стабилизатор поперечной устойчивости:
1 — стойка; 2 — обойма; 3 — втулка; 4 — П-образный стержень; 5 — чашка пружины
Рис. 6. Подвеска ведущих мостов трехосных автомобилей-а-подвеска без балансиров; б – подвеска с балансирами
При вертикальных колебаниях кузова во время движения автомобиля стержень поворачивается во втулках — стабилизатор не работает. В результате бокового крена кузова при повороте автомобиля пружины подвески сжимаются на различную величину, поэтому концы стержня поворачиваются в разные стороны, т. е. он закручивается. Сопротивление стержня закручиванию препятствует сжатию рессоры, и крен кузова уменьшается.
Рекламные предложения:
Читать далее: Подвеска среднего и заднего ведущих мостов трехосных автомобилей
Категория: — Устройство автомобиля
→ Справочник → Статьи → Форум
Источник: http://stroy-technics.ru/article/amortizatory-i-stabilizator-poperechnoi-ustoichivosti
Стабилизатор поперечной устойчивости — зачем он нужен?
При повороте центробежная сила наклоняет автомобиль, со стороны наружных колес увеличивается нагрузка, со стороны внутренних – уменьшается и, как следствие, наблюдается крен и раскачивание кузова. Все это может привести к опрокидыванию автомобиля. Для уменьшения кренов в поворотах применяется стабилизатор поперечной устойчивости.
Что такое стабилизатор поперечной устойчивости
Стабилизатор поперечной устойчивости является
частью автомобильной подвески, соединяющей противоположные колеса с помощью упругого элемента торсионного типа (работает на скручивание). В настоящее время стабилизатор поперечной устойчивости обязательный элемент различных видов независимой подвески легковых автомобилей. Стабилизатор устанавливается как на передней, так и на задней оси автомобиля. В легковых автомобилях, использующих в качестве задней подвески торсионную балку, стабилизатор поперечной устойчивости не устанавливается. Его функции выполняет сама подвеска.
Конструктивно стабилизатор поперечной устойчивости представляет собой стержень (штангу) круглого сечения, имеющий П-образную форму. Стабилизатор изготавливается из пружинной стали. Он располагается поперек кузова автомобиля и крепится к нему в двух местах с помощью резиновых втулок и хомутов. Втулки позволяют стабилизатору вращаться. Стабилизатор имеет, как правило, сложную форму, которая учитывает положение узлов и агрегатов автомобиля, расположенных под днищем кузова.
Концы стабилизатора поперечной устойчивости шарнирно соединяются с элементами подвески автомобиля – рычагами (многорычажная подвеска, подвеска на двойных поперечных рычагах), амортизаторными стойками (подвеска McPherson). Соединение стабилизатора с подвеской может быть как непосредственным, так и с помощью двух тяг (стоек). Наибольшее распространение получило соединение с помощью тяг.
Основа работы стабилизатора поперечной устойчивости
Работа стабилизатора поперечной устойчивости основана на перераспределении нагрузки между упругими элементами подвески. При боковом крене (поперечных угловых колебаниях) концы стабилизатора (тяги) перемещаются в разные стороны (один поднимается, другой опускается). Средняя часть стабилизатора закручивается. Со стороны крена стабилизатор пытается как–бы приподнять кузов, с другой – опустить. Чем больше крен кузова, тем сильнее сопротивление стабилизатора. Таким образом, обеспечивается выравнивание автомобиля по отношению к плоскости дороги. Помимо снижения крена, достигается улучшение сцепных свойств шин в повороте.
Необходимо отметить, что в силу своей конструкции стабилизатор поперечной устойчивости не препятствует вертикальным и продольным угловым колебаниям подвески автомобиля. Так, при вертикальных колебаниях левое и правое колеса движутся вместе, а стабилизатор проворачивается во втулках.
Эффективная работа стабилизатора поперечной устойчивости обеспечивается его жесткостью. Жесткость стабилизатора определяется свойствами материала, формой, геометрией крепления. Чем жестче стабилизатор, тем большую нагрузку он переносит с внешнего колеса и соответственно более крутые повороты может позволить автомобилю. Устанавливая на переднюю и заднюю ось автомобиля стабилизаторы разной жесткости можно изменять тяговые свойства на осях, тем самым достигать желаемый баланс управления (избыточная или недостаточная поворачиваемость автомобиля).
При всех очевидных преимуществах стабилизатор поперечной устойчивости имеет ряд недостатков. Его применение приводит к частичной потере свойств независимой подвески – передаче ударов с одного колеса на другое, уменьшение хода подвески. В идеале при прямолинейном движении автомобиля стабилизатор поперечной устойчивости не нужен.
Кардинально данную проблему решает адаптивная подвеска, позволяющая полностью отказаться от стабилизатора поперечной устойчивости. Дальше всех в этом вопросе пошел Mercedes-Benz, разработав и внедрив на своих автомобилях систему активного контроля кузова (Active Body Control, ABC). Электронная система АВС позволяет контролировать положение кузова, исключающее крены, в различных условиях движения, в том числе при повороте, ускорении и торможении.
Минусы стабилизатора поперечной устойчивости
Стабилизатор поперечной устойчивости ухудшает проходимость внедорожников. При движении по бездорожью стабилизатор может привести к вывешиванию колеса и потере его контакта с дорогой. Борются с данной проблемой несколькими способами.
Самый распространенный способ – использование в качестве стойки стабилизатора гидроцилиндра. В нормальном положении гидроцилиндр заперт, стабилизатор выполняет свои функции в полном объеме. При необходимости движения по бездорожью гидроцилиндр разблокируется с помощью кнопки на панели приборов, стабилизатор поперечной устойчивости отключается. Для предотвращения опрокидывания при достижении определенной скорости движения предусмотрено автоматическое включение стабилизатора (блокировка гидроцилиндра).
Источник: https://avtofun.ru/art_stabilizator_spu.php