Hyper transport frequency что это?

В этой статье:

Cpu frequency что это в БИОСе?

Hyper transport frequency что это?

  • 1 Как правильно разгонять процессор через БИОС
  • 2 BIOS: шаг за шагом
    • 2.1 Меню Main
    • 2.2 Меню Advanced
  • 3 Оверклокинг или как разогнать процессор
  • 4 Персональный блог — Как разогнать ЦП? [AMD]
  • 5 Частота процессора

Если не устраивает быстродействие ПК, то проводят его апгрейд. В первую очередь устанавливают более современный процессор. Но это не единственный способ.

Получить более мощный компьютер можно без замены его компонентов, не тратя денег. Для этого разгоняют процессор, что означает на сленге — «проводят оверклокинг». Как разогнать процессор через БИОС, расскажем в нашей статье.

Почему возможен разгон

Мощность машины зависит от количества выполняемых за единицу времени операций. Она задается тактовой частой, чем она выше, тем больше производительность. Поэтому прогресс вычислительной техники сопровождался постоянным увеличением этой характеристики. Если в первых ЭВМ, собранных на реле и лампах, она составляла несколько герц, то сегодня частота измеряется уже гигагерцами (109 Гц).

Стандартное значение, которое автоматически выставляется генератором на материнской плате, для данной модели процессора задается производителем. Но это не значит, что он не может работать быстрее. Всегда дается перестраховка процентов на 20–30, чтобы все микросхемы в партии стабильно работали даже в неблагоприятных условиях. Частоту можно поднять, причем делается это аппаратно, без внесения изменений в электрическую схему.

Что кроме скорости работы изменяется при разгоне

Более интенсивная работа требует больше энергии. Поэтому разгоняя процессор ноутбука, стоит учитывать, что батарея будет садиться быстрее. Для настольных машин нужен запас мощности блока питания. Также увеличивается нагрев микросхемы, поэтому, решив провести оверклокинг, позаботьтесь о том, чтобы была установлена мощная система охлаждения, штатный кулер вашего компьютера может не справиться с повышенной температурой.

Из сказанного выше можно сделать вывод: потребуются более мощные блок питания и система охлаждения, необходимо контролировать температуру и стабильность работы оборудования.

Опасен ли разгон

Ранние модели БИОС и процессоров не предусматривали контроль температуры. Чрезмерно разогнав машину, можно было сжечь процессор, поэтому мало кто рисковал. Сегодня такая вероятность мала, если происходит перегрев, то система сама переключается на стандартные значения тактовой частоты.

Разгон с помощью программ и через БИОС, что лучше

Разгон процессора можно провести двумя методами:

  • С помощью программ или утилит. Их легко можно скачать в сети, часто они идут в комплекте на диске с драйверами для материнской платы. Такой способ немного проще, но не лишен недостатков. Увеличение скорости начинается только после запуска Windows. Сама программа отбирает ресурс процессора хоть и незначительно.
  • Разгон через БИОС. В этом случае придется разобраться с настройками, причем, как правило, меню БИОСа не русифицировано. Зато система увеличивает производительность сразу после включения. Кроме того, запустившаяся операционная система является отличным тестом стабильности. Если что-то не так, то лучше умерить свой аппетит и снизить скорость.

Как войти в БИОС

Постараемся хоть это немного сложно, так как версии БИОС различаются у различных материнских плат, привести наиболее подробную инструкцию:

  1. Требуется войти в БИОС. Для этого при запуске машины нажимаете Delete, обычно, чтобы попасть в нужный момент, необходимо повторить это действие быстро несколько раз. Если не срабатывает, то пробуете комбинацию Ctl + F1. Должно получиться.
  2. Высвечивается не заставка загрузки Windows, а меню с несколькими колонками и надписями на английском или очень редко на русском языке. Значит, загрузился БИОС. Можно отложить мышку в сторону и забыть про тачпад. Они сейчас не работают.Перемещение между пунктами производится с помощью стрелок, подтверждение выбора — клавишей «Ввод», отмена — ESC. Для сохранения введенных параметров в БИОСе по окончании манипуляций необходимо обязательно выбирать пункт «Save&Exit» (сохранить и выйти) либо нажимать F10.
  3. Начинаете колдовать с параметрами. Существует выбор двух путей — увеличить частоту шины и увеличить множитель.

Разгон поднятием частоты шины

Этот путь выгоднее. Также это единственный метод для процессоров Intel, которые не поддерживают изменение множителя в сторону увеличения. При этом разгоняется не только процессор, а и остальные компоненты системы. Но есть одно но, не всегда оперативная память может работать на повышенной частоте, и работа машины будет нарушена не из-за того, что процессор не стабилен на повышенной частоте, а по причине сбоя памяти. Правда, многие материнские платы позволяют регулировать и тактовую частоту ОЗУ.

Теперь подробнее, что делать:

  1. Находите в меню пункт «CPU Clock» либо «CPU Frequency», «FSB Frequency», «Frequency BCLK», «External Clock» (это все одно и то же) и там увеличиваете значение частоты. При этом не спешите, делаете это постепенно, с шагом примерно в 3–5%. После каждого шага проверяете стабильность и температуру процессора. Нежелательно, чтобы он нагревался более 70 градусов. Для контроля температуры можно применить утилиту SpeedFun или ей подобную. Таким образом, находите оптимальную величину частоты шины.
  2. Если разгон не получается из-за проблем с памятью, то пробуете выставить меньшее значение тактовой частоты для нее. Находите пункт меню, отвечающий за этот параметр в разделах «Advanced» («Advanced Chipset Features») или «Power BIOS Features». Называться он будет «Memclock index value» или «System Memory Frequency». Устанавливаете его ниже, чем значение по умолчанию, можно вообще сбросить до минимума, так как при увеличении частоты шины вырастает и он. Дальше снова повторяете все операции по разгону шины, добиваясь быстрой и стабильной работы компьютера.

Разгон с помощью множителя

Рабочая частота процессора кратна частоте шины. Этот параметр задается аппаратно множителем. Например, шина работает на 133,3 МГц, а процессор на 2,13 ГГц — кратность равна 16. Изменив кратность на 17, получим 133,3*17=2266 — 2,26 ГГц — рабочую частоту процессора.

Изменяя кратность, мы не трогаем шину, поэтому разгоняется только процессор, все остальные элементы системы работают стабильно, так же как и до оверклокинга.

Оверклокинг процессора через BIOS таким методом несколько ограничивает диапазон частот, которые возможно выставить, но это некритично.

Для того чтобы проделать эту операцию, необходимо найти этот параметр в настройках БИОС. Подписи его разные — «CPU Clock Multiplier», «Multiplier Factor», «CPU Ratio», «CPU Frequency Ratio», «Ratio CMOS Setting». Аналогично увеличиваем этот параметр и смотрим на стабильность работы и температуры. Не обязательно колдовать с частотой оперативной памяти. Жалко только, что этот метод работает не для всех процессоров.

Как отменить разгон

Если что-то пошло не так, то сбросить настройки БИОС можно через пункт меню «Load Optimized Default». Если же из-за настроек перестал грузиться и сам BIOS, то выйти в стандартный режим можно с помощью следующих операций:

  1. При включении компьютера зажмите клавишу Insert.
  2. Достаньте на несколько минут батарейку на материнской плате, потом установите ее на место.
  3. Найдите перемкнутые фишкой (джампером) контакты, которые подписаны Clear CMOS. Снимите перемычку и соедините ей два соседних контакта. Операция производится при отключенном питании.

Что еще необходимо учесть при оверклокинге

Расскажем еще о небольших нюансах разгона:

  • Почти всегда при разгоне можно повысить стабильность работы процессора, подняв его напряжение питания. Это можно в пункте меню «CPU Voltage», «VCORE Voltage», «CPU Core». Но при этом обязательно контролируйте температуру и действуйте небольшими шагами не более тысячной доли вольта.
  • При перегреве процессоров они, как правило это делается для их защиты, входят в режим тротлинга с минимальными параметрами. Система будет работать стабильно, но медленно. Поэтому нельзя пересекать этот порог, иначе, зачем разгонять.

Заключение

Данная статья рассказывает о разгоне процессора, который возможно осуществить двумя способами: через BIOS или с помощью специальных утилит, о чем читайте нашу статью о программах для разгона процессора.

Больше внимания было уделено разгону через BIOS, увеличивая частоту шины или множитель. Делать это надо постепенно. Необходимо следить за температурой процессора и проверять его стабильность. Вот и все, что мы хотели рассказать о разгоне.

Надеемся, наша статья поможет увеличить производительность вашей системы.

по теме

Источник: https://UstanoaOS.ru/zhelezo/kak-razognat-protsessor-cherez-bios.html

BIOS: шаг за шагом

BIOS (Basic Input Output System – базовая система ввода/вывода) обладает огромнейшим количеством настроек, относящихся к различным устройствам и функциям ПК. Что же означают все эти меню и параметры? Тем пользователям, которым недосуг изучать многостраничные руководства и искать дополнительную информацию в Интернете, может пригодиться наш краткий обзор.

В качестве примера рассмотрим наиболее распространенный на сегодняшний день AWARD BIOS, который, в частности, применяется в популярных материнских платах ASUS A8N-E и A8N-E SLI. Чтобы войти в меню настроек BIOS Setup, необходимо сразу после включения компьютера нажать определенную клавишу (как правило, Delete, F1 или F2). Какую именно, подскажет сообщение типа Press Del to enter setup в нижнем углу экрана.

Затем пользователь попадает в главное меню BIOS или же на первую страницу меню настроек (в нашем случае – Main).

Во время работы в самом верху экрана видны заголовок с наименованием BIOS (у нас это Phoenix-Award BIOS CMOS Utility), ниже – список настроек, справа от них – маленькое поле, где выведена характеристика подсвеченного курсором параметра, а внизу – строка состояния с описанием используемых горячих клавиш.

Источник: https://gepard-kovrov.com/cpu-frequency-chto-eto-v-biose/

BIOS: шаг за шагом

Hyper transport frequency что это?

BIOS (Basic Input Output System – базовая система ввода/вывода) обладает огромнейшим количеством настроек, относящихся к различным устройствам и функциям ПК. Что же означают все эти меню и параметры? Тем пользователям, которым недосуг изучать многостраничные руководства и искать дополнительную информацию в Интернете, может пригодиться наш краткий обзор.

В качестве примера рассмотрим наиболее распространенный на сегодняшний день AWARD BIOS, который, в частности, применяется в популярных материнских платах ASUS A8N-E и A8N-E SLI. Чтобы войти в меню настроек BIOS Setup, необходимо сразу после включения компьютера нажать определенную клавишу (как правило, Delete, F1 или F2). Какую именно, подскажет сообщение типа Press Del to enter setup в нижнем углу экрана.

Затем пользователь попадает в главное меню BIOS или же на первую страницу меню настроек (в нашем случае – Main).

Во время работы в самом верху экрана видны заголовок с наименованием BIOS (у нас это Phoenix-Award BIOS CMOS Utility), ниже – список настроек, справа от них – маленькое поле, где выведена характеристика подсвеченного курсором параметра, а внизу – строка состояния с описанием используемых горячих клавиш.

Меню Main

Меню Main
Меню Main (Primary IDE)

Меню Main содержит следующие подпункты:

  • System Time – настройка системного времени в формате Часы:Минуты:Секунды.
  • System Date – установка системной даты в формате День недели (определяется автоматически по введенной дате), Месяц:Число:Год.
  • Language – выбор языка меню BIOS, в нашем случае это английский (по умолчанию), немецкий или французский.
  • Legacy Diskette A – определяет тип используемого в компьютере дисковода FDD, имеет следующие значения:
    • Disabled (отключено) – если в системе вообще нет флоппи-дисковода,
    • 360 K, 5.25 in (1.2 M, 5.25 in) – уже давно не применяемые дисководы формата 5,25″,
    • 720 K, 3.5 in (1.44 M, 3.5 in, 2.88 M, 3.5 in) – дисковод для дискет 3,5″ емкостью 720 КВ (на сегодняшний день не используются), 1,44 MB и экзотических на 2,88 MB.
  • Primary/Secondary IDE Master/Slave – позволяет менять настройки устройств IDE в компьютере: жестких дисков, приводов CD-DVD. Primary – основной контроллер, Secondary – вспомогательный. На некоторых современных материнских платах есть только один IDE-контроллер, соответственно, в меню BIOS не будет пункта Secondary IDE Master/Slave. Master – устройство, подключенное как основное (на крайний коннектор шлейфа), Slave – второстепенное (на средний коннектор). Имеет следующие параметры:
    • Auto и Manual – автоматическая и ручная настройка параметров устройства. Если установлено значение Auto, BIOS автоматически определит все характеристики, но это займет некоторое время при загрузке компьютера. В случае выбора Manual можно указать параметры самостоятельно, но здесь легко ошибиться, так что лучше оставить Auto.
    • Access Mode – тип доступа к устройству IDE, применимо к жесткому диску. Имеет значения Auto, CHS, LBA, Large. Изменять их следует с большой осторожностью, удостоверившись, что жесткий диск сможет функционировать в таком режиме (тип доступа, с которым работает устройство, указан производителем на наклейке сверху жесткого диска, а также в прилагаемом к нему руководстве). Неправильная установка параметра Access Mode приведет к тому, что жесткий диск перестанет опознаваться либо вообще выйдет из строя. Подробнее об этих значениях:
    • CHS (сокращение от Cylinder, Head, Sector) и Large (L-CHS, где L – logical) – сейчас не используются, применялись в старых устройствах емкостью до 504 MB или 4 GB (для CHS и Large соответственно).
    • LBA (Logical Block Addressing) – используется для всех современных жестких дисков большого объема.
    • PIO Mode (Programmed Input/Output) – режим программной обработки операций ввода/вывода, принимает следующие значения:
      • 0 – 3,3 MBps,
      • 1 – 5,2 MBps,
      • 2 – 8,3 MBps,
      • 3 – 11,1 MBps,
      • 4 – 16,6 MBps.
    • Auto – автоматическое определение режима PIO.
    • UDMA Mode (Ultra Direct Memory Access) – обеспечивает прямой доступ к памяти при обработке операций ввода/вывода. Имеет два значения: Auto (автоматическое определение возможности включения UDMA) и Disable (отключение данной функции). Дальнейшая настройка осуществляется из операционной системы:
      • DMA Mode 0 – 4,16 MBps,
      • DMA Mode 1 – 13,3 MBps,
      • DMA Mode 2 – 16,6 MBps,
      • Ultra DMA 33 – 33,3 MBps,
      • Ultra DMA 66 – 66,7 MBps,
      • Ultra DMA 100 – 100 MBps.
    • Capacity, Cylinder, Head, Sector, Transfer Mode – информационные параметры, не подлежащие редактированию.
    • Capacity – емкость жесткого диска. Если на данном канале IDE установлен привод CD-DVD, параметр принимает значение 0, то же касается и следующего пункта.
    • Cylinder, Head, Sector – физическая геометрия жесткого диска, т. е. количество цилиндров, головок и секторов на дорожке.
    • Transfer Mode – режим передачи данных.
  • Primary, Secondary, Third, Fourth SATA (Serial AT Attachment) Master – пункт отвечает за конфигурацию устройств с интерфейсом SATА, позволяющим достичь более высоких скоростей передачи данных: при протоколе SATA – до 100 MBps, при SATA2 – до 150 MBps. Присутствует только в случае, если материнская плата поддерживает подключение устройств c SATA. Количество таких пунктов (Secondary, Third и т. д.) зависит от числа каналов SATA на материнской плате. Имеет следующие параметры:
    • Extended Drive – принимает значения None и Auto. Если установлен Auto, при загрузке BIOS опрашивает порт SATA о подключении к нему устройства, при None подобного не происходит. Стоит заметить, что если значение None будет установлено для порта, к которому подключено устройство, последнее не обнаружится в операционной системе.
    • Access Mode – здесь все подобно IDE Access Mode, но значений только два – Large и Auto.
    • Capacity, Cylinder, Head, Sector – то же, что и для IDE: емкость, количество цилиндров, головок, секторов.
    • Precomp (сокр. Precompen-sation) – неизменяемый информационный параметр, имеющийся только в жестких дисках с интерфейсом SATA и относящийся к функции компенсации задержек при доступе к дорожкам, находящимся на том или ином расстоянии от шпинделя.
    • Landing Zone – устаревшее понятие, которое почему-то по-прежнему применяют в описании жестких дисков SATA. Определяет местоположение пустого (неиспользуемого) цилиндра жесткого диска, предназначенного для парковки головок. Информационный параметр.
    • HDD SMART (Self-Monitoring Analysis and Reporting Technology) Monitoring – функция опроса результата самотестирования жесткого диска. Весьма сомнительный пункт BIOS, поскольку каждый из производителей назначает разные предельные состояния характеристик своих жестких дисков. В случае если какой-либо из параметров выйдет за границы этих значений (температура, нарушение работы головок чтения/записи и т. д.), на экран выводится соответствующее сообщение и загрузка компьютера приостанавливается.
  • Installed Memory – информационный параметр. Отображает количество установленной в системе памяти.

Меню Advanced

Меню Advanced
Меню Advanced (CPU Configuration)
Меню Advanced (DRAM Configuration)

Меню Advanced имеет следующие настройки:

  • CPU Configuration – настройка режимов работы центрального процессора и оперативной памяти. В этом подменю доступны такие параметры:
  • CPU Type, CPU Speed, Cache RAM – информационные характеристики, отображающие тип центрального процессора, реальную тактовую частоту, на которой он работает в данный момент, и объем кэш-памяти второго уровня.
  • Hyper Transport Frequency – множитель частоты шины Hyper Transport. Этот параметр актуален лишь для материнских плат для процессоров AMD семейства К8 (Sempron, Athlon 64, Athlon 64 X2, Athlon FX) и используется только в BIOS. Имеет значения 1х, 2х, 3х, 4х, 5х, Auto. Реальная величина частоты шины Hyper Transport является произведением множителя и частоты тактового генератора (о нем мы поговорим ниже). Стоит помнить, что при выставлении этого параметра в положение, отличное от Auto, частота шины не должна превышать 1000 MHz.
  • AMD K8 Coon`n`Quiet Control – так же, как и предыдущий пункт, имеет силу только для процессоров AMD K8. Отвечает за работу технологии Coon`n`Quiet – при низкой загрузке центрального процессора автоматически снижаются его множитель и напряжение на ядре. Стоит заметить, что включения этой функции недостаточно для полноценного использования технологии – в операционной системе необходимо установить специальный драйвер для процессора. Также Coon`n`Quiet не будет работать, если множитель центрального процессора задан вручную.
  • DRAM Configuration – подменю, отвечающее за настройку работы памяти. Здесь можно изменять следующие параметры (как правило, чем ниже их значения, тем выше производительность подсистемы памяти):
    • Timing Mode – автоматическая или ручная настройка таймингов (параметров) памяти Auto и Manual.Memclock Index Value MHz – определяет тактовую частоту памяти DDR, которая в два раза превышает частоту тактового генератора. К примеру, DDR400 соответствует частоте тактового генератора 200 MHz. Но так как в системах, построенных на базе процессоров AMD K8, частота работы памяти привязана не к тактовому генератору, а к реальной частоте процессора на данный момент, то этот параметр влияет лишь на делитель.
    • CAS# (Column Address Strobe) Latency (Tcl) – характеристика чипа памяти, определяющая минимальное количество циклов от момента запроса данных до их получения (и возможности устойчивого считывания), измеряется в тактах. Может принимать значения 2Т, 2,5Т, 3Т.
    • Min RAS# (Row Address Strobe) active Time (Tras) – то же самое, что и CAS# Latency, только по отношению к столбцу массива памяти: ячейки памяти описываются двумерной матрицей вида X×Y, где X – количество строк (CAS#), Y – количество столбцов (RAS#). Исчисляется в тактах (от 5T до 15Т).
    • RAS# to CAS# Delay (Trcd) – операции обращения к столбцам и строкам памяти, выполняются отдельно друг от друга. Данный параметр описывает, сколько времени пройдет между этими событиями, измеряется в тактах: от 2Т до 7Т.
    • Row Precharge Time (Trp) – может называться RAS# Precharge Time. Определяет время повторной выдачи RAS#, проще говоря, через какой срок (в тактах) возможна подача следующего запроса RAS#. Принимает значения от 2Т до 7Т.
    • Row cycle time (Trc) – он же Row Active Time, Raw Pulse Width. Показывает, в течение какого периода строка (ряд) открыта для записи/перезаписи, т. е. время, за которое происходит полный цикл открытия и обновления строки памяти. Измеряется в тактах (от 7Т до 22Т).
    • Row refresh cyc time (Trfc) – время, по прошествии которого память опять способна будет произвести операцию доступа к строке и ее обновление. Исчисляется в тактах, принимает значения от 7Т до 22Т.
    • Read-to-Write time (Trwt), называемый также DRAM Leadoff R/W Timing, – промежуток времени между функциями чтения и записи. Показывает, как быстро чип памяти сможет перейти от одного состояния к другому. Измеряется в тактах (от 1Т до 6Т).
    • Write Recovery Time (Twr) – время, необходимое для восстановления цикла записи. Данный параметр позволяет определить, через какой период (в тактах) возможно повторно вызвать функцию записи информации. Принимает значения 2Т/3Т.
    • 1T/2T Memory Timing – иногда фигурирует как DRAM Command Rate. Определяет задержку поступления команд в память (задержка декодирования контроллером командно-адресной информации). Оказывает очень серьезное влияние на производительность памяти, измеряется в тактах (1Т/2Т).
    • S/W DRAM Over 4G Remapping, H/W DRAM Over 4G Remapping – параметры, при включении которых появляется возможность адресовать объемы памяти от 4 GB и более. На сегодняшний день функция пока довольно редкая, но необходимая в будущем, ведь объем оперативной памяти, требуемой для комфортной работы, уже приближается к 2 GB, в то время как раньше мы выбирали между 256 или 512 MB. BIOS большинства современных материнских плат способен адресовать до 4 GB памяти.

Источник: https://itc.ua/articles/bios_shag_za_shagom_22708/

Как разогнать ЦП? [AMD]

Hyper transport frequency что это?

: 8 лет назад

Решил написать небольшой FAQ, как разогнать ЦП компьютера, проверить его после разгона на отказоустойчивость.

Мне всегда хотелось разогнать свою «малышку» хотя бы на чуть-чуть, но увы на стареньком Celeron 668 Mhz много не добьешься =) Потом появился AMD Athlon 64 3000+. Тогда и решил попробовать — кулер был хороший для охлаждения.

К сожалению скриншотов тех не осталось, но разогнал я до 2,4 ГГц с 1.8 ГГц. Для меня это был результат. Сейчас же стоит AMD Phenom II x4 960T, но разгоном я пока сильно не занимался, немного разогнал с 3.0 до 3.4 ГГц.

Разгон системы — вполне опасная вещь, если не знать куда лезешь и что нажимаешь. Продавцы не дают гарантию на разгон, В случае, если что-то сломается или выйдет из строя, по гарантии нам никто ничего не обменяет. Разгон — дело выбора. Все манипуляции с компьютером проводимые Вами не входят в условия гарантии! Вы делаете это на свой страхи риск!

Ну что же, хватит предысторий, начнем!

Я буду приводить инструкции на своей конфигурации компьютера, надписи могут отличаться, но суть одна.

Часть 1. Подготовка|Выбор комплектующих

Уровень успеха разгона очень сильно зависит от комплектующих системы. Для начала потребуется процессор с хорошим потенциалом разгона, способный работать на более высоких частотах, чем штатно указывает производитель. Для разгона процессора важно, чтобы другие компоненты тоже были подобраны с учётом этой задачи. Довольно критичен выбор материнской платы с BIOS, дружественным к разгону.

Температура и прочие характеристики

Перво-наперво нужно знать максимально рабочею температуру процессора — максимально допустимая у меня ≈ 80-90 °C.

— необходимо знать множитель процессора;

Материнская плата и ОЗУ

При разгоне необходима хорошая материнская плата и память.

Материнская плата должна обеспечивать достаточно большой набор функций в BIOS, включая поддержку Advanced Clock Calibration (ACC), а также прекрасно работать с утилитой AMD OverDrive, что важно для выжимания максимума из процессоров Phenom.

Подбор правильной памяти тоже важен, если вы хотите достичь максимальной производительности после разгона. При возможности устанавливайте высокопроизводительную память, в зависимости от вашей материнской платы.

У меня — ASUS M4A87TD-EVO | Kingston DDR3 2x1024mb

Охлаждение ЦП:

Прежде чем задуматься о разгоне — вы должны понимать, что разгон дело не простое и «горячие». Что бы не испортить систему необходимо хорошее охлаждение, которое стоит не то что больших, но все таки денег.

Так же, лучше открыть крышку корпуса, что бы обеспечить отток горячего воздуха (у многих стоит не один и не два кулера в системе, но лишний отток все равно не помешает)

Термопаста — специальный слой теплопроводящего состава между охлаждаемой поверхностью и отводящим тепло устройством.

Я менял ее один раз, потому что процессор стал плохо отдавать тепло и сильно греться (AMD Athlon 64 3000+).

Сильно дорогую я не покупал. Купил пасту «Титан», аккуратно нанес ее на процессор и прикрепил радиатор (об этом я расскажу в следующем сообщении).

Термопаста очень важна! Чем лучше она качеством, тем лучше она будет проводить тепло к радиатору и следовательно тем меньше будет температура ЦП.

Но можно сделать небольшой разгон и на боксовом кулере, но не ждите много — увеличение частоты на 30-60 Мгц, это уже разгон. — Если у Вас установлен боксовый кулер, то в разгоне мы не много ограничены — охлаждения может не хватить на многое.

Блок питания (БП)

БП Должен быть стабильным, обеспечивающий стабильные уровни напряжений и достаточный ток, чтобы справиться с повышенными требованиями разогнанного компьютера. Слабый или устаревший блок питания, загруженный «под завязку» может испортить все наши старания.

У меня — OCZ 500W

Как рассчитать..?

Тактовая частота CPU = базовая частота * множитель CPU;

частота северного моста = базовая частота * множитель северного моста;

частота канала HyperTransport = базовая частота * множитель HyperTransport;

частота памяти = базовая частота * множитель памяти.

По этой части вроде все.

Что такое разгон?

Разумеется, бездумно жать кнопки — это не правильно. Нужно знать к чему приведут все эти нажатия. Прежде чем нажимать, нужно понимать для чего ты нажимаешь, и что после этого будет. Опасность разгона сильно преувеличена — но не ничего не возможного! Есть вполне реальная вероятность вывести компьютер из работоспособного состояния. Попросту — детали перегреются и начнут плавиться.. И никто по гарантии нам их не поменяет! Я думаю, что этот блог читают умные люди,и следовательно будем считать я Вас предупредил!

Разгон или оверклокинг (от англ. overclocking) — повышение быстродействия компонентов компьютера за счёт эксплуатации их в форсированных (нештатных) режимах работы.

Разгон сводиться к повышению тактовой частоты процессора.

Выбор: как разгонять?

В настоящее время компьютер можно разогнать посредством программ, работающих из под системы.

Например Clockgen

Так же есть специальные программы для матерински плат, на примере ASUS TurboV EVO

Так же можно разгонять систему из BIOS, оперируя настройками оттуда.

BIOS

BIOS — basic input/output system — базовая система ввода-вывода.

BIOS многолик — есть Phoenix, AMI прочие версии. Но суть одна — по названиям можно догадаться что за функция.

К сожалению я не смогу предоставить своих фотографий, так как нету камеры.а на телефон фоткать — слишком убого получается.. Извиняюсь что нет своих фотографий, но то что я нашел в хламе друзей не сильно отличается от моего, да и вообще от всех M/b.

Представленная мне плата — ASUS M3A78-T

AMI BIOS — M4A87TD

Все меню я рассматривать не буду, Нас интересует только разгон.

Во-первых, плата ASUS M3A78-T позволяет изменять частоту HTT в диапазоне от 200 МГц до 600 МГц с шагом в 1 МГц. Во-вторых, пользователь может поменять множитель шины HT (HyperTransport):

В-третьих, можно изменить множитель контроллера памяти:

Для того что бы разогнать ЦП необходимо увеличивать частоту Шины процессора. Если не стартует после этого — увеличиваем напряжение на процессор.

Все это делается в меню Advanced

CPU Frequency — собственно частота. дефолотное значение на всех компьютерах, с которыми я работал — 200

Processor Frequency Multiplier — множитель. может стоять — Auto, x4, x15.

Processor Voltage — Вольтаж процессора обычно стоит на Auto или 1.4

Processor-NB Frequency Multiplier — множитель контроллера памяти.

Пользователям современных плат (например все та же ASUS M4A87TD EVO) можно просто нажать кнопочку и система сама подберет оптимальные настройки разгона ?

ИТОГИ: Проверяем стабильность

Ну вот, мы разогнали процессор, теперь нужно проверить его на стабильность (отказоустойчивость). Это позволит понять нам, справляется ли ЦП с возложенной на него нагрузкой. Во время теста — если «все так плохо», компьюер может перезагрузиться, уйти в BSOD или попросту зависнуть. Это значит , что компьютер после разгона будет сбоить. Возвращаемся в BIOS и понижаем частоту и вольтаж процессора. запускаем, проверяем — если все нормально оставляем. Если нет то опять в БИОС и проделываем тот же фокус с частотой шинымножителемвольтажем процессора.

Мониторить температуру во время теста обязательно!

Для этого необходимы программы:

Мониторинг данных датчиков:

FanExpert, CPU-Z, AIDA64Everest, AMD Over Drive.

Для тестирования системы необходимы:

LinX, S&M, AMD OverDirve.

Запускаем тесты, смотрим температуру.

Собственно все:) Прошу строго не судить, сильно и жестоко не критиковать.

Удачи!

Источник: https://club.dns-shop.ru/review/t-1-personalniy-blog/2341-kak-razognat-tsp-amd/

Шина FSB — Front Side Bus и её последователи

Hyper transport frequency что это?

FSB — наверняка, многие пользователи не раз слышали о таком компьютерном термине. Это название носит один из важнейших компонентов материнской платы – системная шина.

Назначение шины FSB

Как известно, сердцем любого персонального компьютера является центральный процессор. Но не только процессор определяет архитектуру ПК. Она также во многом зависит и от используемого на материнской плате набора вспомогательных микросхем (чипсета). Кроме того, процессор не может функционировать и без внутренних шин, представляющих собой набор сигнальных проводников на системной плате. В функции шин входит передача информации между различными устройствами компьютера и центральным процессором. Характеристики внутренних шин, в частности, их пропускная способность и частота во многом определяют и характеристики самого компьютера.

Пожалуй, наиболее важной из шин, от которой больше всего зависит производительность компьютера, является шина FSB. Аббревиатура FSB расшифровывается как Front Side Bus, что можно перевести как «передняя» шина. В основные функции шины входит передача данных между процессором и чипсетом. Точнее говоря, FSB располагается между процессором и микросхемой «северного моста» материнской платы, где находится контроллер оперативной памяти.

Связь же между северным мостом и другой важной микросхемой чипсета, называемой «южным мостом» и содержащей контроллеры устройств ввода-вывода, в современных компьютерах обычно осуществляется при помощи другой шины, которая носит наименование Direct Media Interface.

Как правило, процессор и шина имеют одну и ту же базовую частоту, которая называется опорной или реальной. В случае процессора его конечная частота определяется произведением опорной частоты на определенный множитель. Вообще говоря, реальная частота FSB обычно является основной частотой материнской платы, при помощи которой определяются рабочие частоты всех остальных устройств.

В большинстве старых компьютеров реальная частота системной шины определяла и частоту оперативной памяти, однако сейчас память часто может иметь и другую частоту – в том случае, если контроллер памяти располагается в самом процессоре. Кроме того, следует иметь в виду, что реальная частота шины не эквивалентна ее эффективной частоте, которая определяется количеством передаваемых бит информации в секунду.

В настоящее время данная шина считается устаревшей и постепенно заменяется более новыми – QuickPath и HyperTransport. Системная шина QuickPath является разработкой фирмы Intel, а HyperTransport – компании AMD.

Front Side Bus в традиционной архитектуре чипсета

QuickPath

Шина QuickPath Interconnect (QPI) была разработана Intel в 2008 г. для замены традиционной шины FSB. Первоначально QPI использовалась в компьютерах на основе процессоров Xeon и Itanium. Разработка QPI была призвана бросить вызов уже использовавшейся в течение некоторого времени в чипсетах AMD шине Hypertransport.

Хотя QPI принято называть шиной, тем не менее, ее свойства существенно отличаются от свойств традиционной системной шины, и по своему устройству она представляет собой проводное соединение типа interconnect. QPI является неотъемлемой частью технологии, которую Intel называет архитектурой QuickPath.

Всего QPI имеет в своем составе 20 линий данных, а общее количество проводников шины QPI равно 84. Как и Hypertransport, технология QuickPath подразумевает, что контроллер памяти встроен в сам центральный процессор, поэтому она используется лишь для связи процессора с контроллером ввода-вывода.

Шина QuickPath может работать на частотах в  2.4, 2.93, 3.2, 4.0 или 4.8 ГГц.

Схема расположения QuickPath Interconnect

Hypertransport

Шина Hypertransport является разработкой AMD. Hypertransport имеет рабочие характеристики, сближающие ее с шиной QuickPath, но при этом она была создана на несколько лет раньше последней. Шину отличают оригинальные архитектура и топология, совершенно непохожие  на архитектуру и топологию FSB. В основе шины Hypertransport лежат такие составные элементы, как тоннели, мосты, линки и цепи. Архитектура шины призвана исключить узкие места в схеме соединений между отдельными устройствами материнской платы и передавать информацию с высокой скоростью и небольшим количеством задержек.

Существует несколько версий Hypertransport, работающих на разной тактовой частоте – от 200 МГц до 3,2 ГГц. Максимальная пропускная способность шины для версии 3.1 составляет более 51 ГБ/с (в обоих направлениях).  Шина используется как для замены шины FSB в однопроцессорных системах, так и в качестве основной шины в многопроцессорных компьютерах.

Схема расположения шины Hypertransport

Direct Media Interface

Пару слов стоит сказать и о такой разновидности системной шины, как Direct Media Interface (DMI). DMI предназначена для соединения между двумя основными микросхемами чипсета – северным и южным мостами. Впервые шина типа DMI была использована в чипсетах Intel в 2004 г.

Шина DMI имеет свойства архитектуры, объединяющие ее с такой шиной для подключения периферийных устройств, как PCI Express. В частности, DMI использует линии с последовательной  передачей данных, а также имеет отдельные проводники для передачи и приема данных.

Место DMI (обозначена красным) в архитектуре компьютера.

Оригинальная реализация DMI обеспечивала передачу данных до 10 ГБит/c в каждом направлении. Современная же версия шины, DMI 2.0, может поддерживать скорость в 20 ГБ/c в обоих направлениях. Многие мобильные версии DMI имеют вдвое меньшее количество сигнальных линий по сравнению с версиями DMI для настольных систем.

Autoline-eu.ru
Добавить комментарий