Как работает система зажигания автомобиля?

В этой статье:

Система зажигания является необходимой частью автомобиля

Как работает система зажигания автомобиля?

Благодаря системе зажигания авто в определенный момент работы двигателя производится подача на свечи зажигания искрового разряда. Данная схема системы зажигания применяется в бензиновых моторах. В дизельных двигателях система зажигания работает следующим образом, в момент сжатия происходит впрыск топлива. Существуют некоторые марки американских автомобилей, в которых система зажигания, а точнее ее импульсы подаются непосредственно в блок управления погружаемым топливным насосом.

Все существующие системы зажигания разделяются на три вида:

  • Контактная схема, в которой импульсы создаются непосредственно во время работы на разрыв контактов;
  • Бесконтактная схема, где при помощи электронно-транзисторного устройства (коммутатора) создаются управляющие импульсы. Коммутатор нередко еще называют генератором импульсов.
  • Микропроцессорная схема, в которой электронное устройство управляет моментом зажигания.

В двухтактных двигателях без внешнего источника питания применяется система зажигания типа «магнето». Принцип работы «магнето» заключается в создании ЭДС, в момент вращения в катушке зажигания постоянного магнита по заднему фронту импульса.

Все описанные типы систем зажигания отличаются только способом создания управляющего импульса.

Устройство системы зажигания

На рисунке представлена система зажигания, которая применяется в бензиновых автомобилях.

Рассмотрим более подробно устройство и схему системы зажигания авто.

Основные элементы:

  • источник питания (аккумуляторная батарея и автомобильный генератор);
  • накопитель энергии;
  • выключатель зажигания;
  • блок управления накоплением энергии (микропроцессорный блок управления, прерыватель, транзисторный коммутатор);
  • блок распределения энергии по цилиндрам (электронный блок управления, механический распределитель);
  • свечи зажигания;
  • высоковольтные провода.

Источником питания для системы зажигания выступает аккумуляторная батарея непосредственно в момент запуска мотора, и генератор во время работы двигателя.

Накопитель применяется для аккумуляции и преобразования достаточного количества энергии, которая используется на создание электрического разряда в электродах свечи зажигания. Современная система зажигания автомобиля может применять емкостной или индуктивный накопитель.

Индуктивный накопитель представляет собой катушку зажигания (автотрансформатор), первичная обмотка у которой, подключается к полюсу плюсовому, а минусовой полюс подключается через устройство разрыва. В процессе работы устройства разрыва, возьмем для примера кулачки зажигания, в первичной обмотке наводится напряжение самоиндукции. В это время во вторичной обмотке создается повышенное напряжение, необходимое для пробоя на свече воздушного зазора.

Емкостной накопитель представлен в виде емкости, которая заряжается при помощи повышенного напряжения. В нужный момент отдает всю энергию на свечу зажигания.

Блок управления накоплением энергии предназначен для определения начального момента накопления энергии, а также момента его передачи на свечу зажигания.

Выключатель зажигания – электрический или механический контактный блок для подачи в систему зажигания напряжения. Выключатель зажигания многим автомобилистам известен, как «замок зажигания». Ему отводится две функции: подача напряжения непосредственно на втягивающее реле стартера и подача напряжения в бортовую сеть автомобиля.

Устройство распределения по цилиндрам применяется для подачи в определенный момент энергии к свечам зажигания от накопителя. Данный элемент системы зажигания двигателя состоит из блока управления, коммутатора и распределителя.

Автомобилистам наиболее известно это устройство, как «трамблер», который является распределителем зажигания. Трамблер распределяет по проводам высокое напряжение на свечи цилиндров. Как правило, в распределителе присутствует кулачковый механизм.

Свеча зажигания – устройство с двумя электродами, которые находятся друг от друга на определенном расстоянии от 0.15 до 0,25 мм. Свеча состоит из фарфорового изолятора, который плотно насажен на металлическую резьбу, электродом служит центральный проводник, а вторым электродом выступает резьба.

Рекомендуемая статья:  Как выбрать автомобильный компрессор — Плюсы и Минусы

Высоковольтные провода представляют собой одножильные кабеля с усиленной изоляцией. Проводник может быть выполнен в виде спирали, что поможет избавиться от помех в радиодиапазоне.

Принцип работы системы зажигания

Разделим работу системы зажигания на следующие этапы:

  • аккумуляция электрической энергии;
  • трансформация (преобразование) энергии;
  • разделение по свечам зажигания энергии;
  • образование искры;
  • разжигание топливно-воздушной смеси.

На примере классической системы зажигания рассмотрим принцип работы. В процессе вращения вала привода трамблера приводятся в действие кулачки, подаваемые на обмотку первичную автотрансформатора напряжение 12 вольт.

В момент подачи напряжения на трансформатор, наводится ЭДС самоиндукции в обмотке и вследствие этого, возникает высокое напряжение до 30000 вольт на вторичной обмотке. После чего в распределитель зажигания (бегунок) подается высокое напряжение, который в момент вращения подает напряжение на свечи. 30000 вольт достаточно, чтобы пробить воздушный зазор свечи искровым зарядом.

Система зажигания автомобиля должна быть идеально отрегулирована. Если будет позднее или раннее зажигание, то двигатель внутреннего сгорания может потерять свою мощность или появится повышенная детонация, а это очень не понравится вашей шестерке (ВАЗ 2106).

Alex S 12 октября, 2013

в: Полезные советы и устройство авто

Как устроен автомобиль

Источник: https://avto-all.com/avtolyubitelyam-na-zametku/sistema-zazhiganiya-ochen-vazhna-dlya-avtomobilya

Как устроена система зажигания в автомобиле?

Как работает система зажигания автомобиля?

Корректные условия для системы зажигания, вернее, базовые условия – это:

  • Искра должна появляться в нужном цилиндре, в соответствии с порядком работы цилиндров.
  • Искра должна возникать своевременно, в нужный момент и с необходимым углом опережения зажигания.
  • Она должна гарантировано воспламенять смесь.
  • Надёжность

Как вы понимаете, у такой системы могут возникать и неполадки, к примеру, пропуски искрообразования, детонация и трудности с запуском двигателя.

В сегодняшнем мире есть несколько видов систем зажигания для автомобилей, контактная, бесконтактная и электронная. Эти системы имеют общие особенности, к примеру, отсутствие распределителя зажигания, который давно уступил место катушке.

В контактной системе зажигания управление накоплением и распределение электрической энергии по цилиндрам осуществляется механическим устройством – прерывателем-распределителем. Витком дальнейшего развития контактной системы зажигания является контактная транзисторная система зажигания, в первичной цепи катушки зажигания которой применен транзисторный коммутатор.

В отличии от контактной, в бесконтактной системе зажигания для управления накоплением энергии используется транзисторный коммутатор, взаимодействующий с бесконтактным датчиком импульсов. Транзисторный коммутатор в данной системе выполняет роль прерывателя. Распределение тока высокого напряжения осуществляется механическим распределителем.

В электронной системе зажигания используется электронный блок управления, с помощью которого производится управление процессом накопления и распределения электрической энергии. В ранних конструкциях электронной системы зажигания электронный блок одновременно управлял системой зажигания и системой впрыска топлива (т.н. объединенная система впрыска и зажигания).

Устройство

Принцип работы системы зажигания заключается в накоплении и преобразовании катушкой зажигания низкого напряжения (12В) электрической сети автомобиля в высокое напряжение (до 30000В), распределении и передаче высокого напряжения к соответствующей свече зажигания и образовании в нужный момент искры на свече зажигания. В работе системы зажигания можно выделить следующие этапы: накопление электрической энергии, преобразование энергии, распределение энергии по свечам зажигания, образование искры, воспламенение топливно-воздушной смеси.

Механический прерыватель осуществляет непосредственное управление процессом накопления (первичной цепью) и отвечает за замыкание/размыкание питания первичной обмотки. Контакты прерывателя можно увидеть, заглянув под крышку распределителя. Пластичная пружина подвижного контакта прижимает его к недвижимому контакту. Их размыкание выполняется только на короткий срок, а конкретно, в момент, когда набегающий кулачок валика привода оказывает давление на молоточек подвижного контакта.

К контактам подключен конденсатор, который не даёт им обгорать. Электроразряд поглощается и искрение уменьшается. Параллельно в цепи создаётся низкое напряжение обратного тока, которое положительно сказывается на исчезновении магнитного поля.

Прерыватель находится в корпусе распределителя зажигания, и это части классической системы зажигания.

Ещё один важный узел – центробежный регулятор опережения зажигания, механизм, предназначенный для автоматического изменения угла опережения зажигания в зависимости от числа оборотов коленчатого вала двигателя.

Центробежный регулятор размещён внутри корпуса прерывателя-распределителя. Как правило, он работает совместно с вакуумным регулятором, оба являются составной частью прерывателя-распределителя. Называется он центробежным от вида силы, использующейся для реализации изменения опережения.

На приводном валу прерывателя расположена пластина, на которой размещены два грузика. Грузики свободно сидят на осях и стянуты пружинами. Причём пружины обладают разной жёсткостью, что необходимо для предотвращения резонанса. При этом, кулачок прерывателя и планка с двумя продольными прорезями надеты на верхнюю часть приводного валика. В продольные прорези планки входят штифты грузиков.

Вращение передаётся от приводного валика к кулачку через грузики, штифты и планку с прорезями. Чем быстрее вращается приводной вал, тем больше расходятся грузики, тем на бо́льший угол проворачивается кулачок по ходу вращения относительно контактной группы прерывателя. С увеличением оборотов угол опережения зажигания увеличивается. С уменьшением числа оборотов центробежная сила уменьшается, пружины стягивают грузики, кулачок поворачивается против хода его вращения, контакты прерывателя замыкаются позже и угол опережения зажигания уменьшается.

Если на двигателе применено бесконтактное электронное зажигание — тогда вместо кулачка проворачивается экран бесконтактного датчика момента искрообразования.

Если механический прерыватель оборудован транзисторным коммутатором, то, в этом случае, он управляет только им, а тот, в свою очередь, отвечает за управление процессом накопления энергии.

Такая конструкция существенно превосходит аналогичные устройства без транзисторного коммутатора, так как здесь контактный прерыватель более надежный, чему способствует протекание сквозь него тока меньшей силы, а значит, пригорание контактов во время размыкания практически полностью исключается.

Соответственно, конденсатор, параллельно подключенный к контактам прерывателя, тут просто не нужен, а в остальном – система полностью идентична классическому варианту. Обе системы, имеющие механический прерыватель, обладают общим названием — «контактные системы зажигания».

Системы с транзисторным коммутатором, оборудованные бесконтактным датчиком (импульсным генератором), могут быть индуктивного типа, основанными на эффекте Холла или относиться к оптическому типу. В данном случае, место механического прерывателя занимает импульсный датчик-генератор с преобразователем сигналов, который, посредством транзисторного коммутатора, осуществляет управление накопителем энергии. Как правило, датчик-генератор расположен внутри распределителя, конструкция которого ничем не отличается от конструкции аналогичной детали в контактной системе, поэтому указанный узел получил название «датчика-распределителя».

Как оно работает?

Несмотря на то, к какому типу относится та или иная система зажигания, все они имеют несколько общих рабочих этапов, предусматривающих накопление нужного заряда, его высоковольтное преобразование, распределение, образование на свечах искр и возгорание топливной смеси. Любой из них требует слаженной и точной работы, а значит, стоит выбирать только проверенные устройства, доказавшие свою надежность. В этом плане, наилучшим вариантом принято считать электронную систему зажигания, где всем рабочим процессом (подачей искры и ее распределением по свечам) управляет электроника.

Электронная система зажигания – это не отдельный, самостоятельный компонент, а составляющая часть системы управления мотором, которая основывается на работе датчика положения коленвала, датчика, фиксирующего частоту его вращения и датчика массового расхода воздуха. Получив от них нужную информацию, ЭБУ принимает решение касательно момента подачи искры и распределения зажигания. Естественно, в блоке управления уже прописаны определенные команды, выполняющиеся после получения и анализа данных с упомянутых датчиков.

В такой системе воспламенения топливной смеси полностью исключены механические движущиеся части, а благодаря специальным датчикам и особому блоку управления, образование и подача искры проходят намного быстрее и надежнее, нежели у аналогичных систем контактного и бесконтактного типа. Этот факт позволяет улучшить работу мотора, увеличив его мощность и снизив потребление топлива. Более того, нельзя не отметить высокую рабочую надежность устройств данного типа.

Бесконтактное зажигание отличается тем, что не зависит напрямую от размыкания контактов, а главную роль в процессе образования искры здесь выполняет транзисторный коммутатор и специальный датчик. Отсутствие прямой зависимости от качества и чистоты поверхности контактной группы гарантирует более эффективное искрообразование. Однако как и в контактном варианте системы зажигания, здесь также используется прерыватель-распределитель, отвечающий за своевременную передачу тока на свечу зажигания. Рабочий принцип бесконтактной системы предусматривает выполнение некоторых действий.

Когда коленвал двигателя приходит в движение, датчик-распределитель формирует соответствующие импульсы напряжения и направляет их на транзисторный коммутатор, задача которого – создавать импульсы тока в первичной обмотке катушки зажигания. В момент прерывания во вторичной обмотке катушки проходит индуцирование тока высокого напряжения. Он подается на центральный контакт распределителя, а оттуда, посредством проводов высокого напряжения, поступает на свечи зажигания. Последние и осуществляют воспламенение топливовоздушной смеси.

В случае увеличения оборотов коленвала, за регулировку угла опережения зажигания отвечает центробежный регулятор, а при изменении нагрузки на силовой агрегат эта задача возлагается на вакуумный регулятор опережения зажигания.

Принцип работы контактного зажигания несколько отличается от вариантов, приведенных выше. Когда контакт прерывателя пребывает в замкнутом состоянии, ток низкого напряжения проходит по первичной обмотке катушки. В процессе их размыкания, во второй катушке происходит индуцирование тока высокого напряжения, и, посредством высоковольтных проводов, он передается на крышку распределителя, после чего расходится по свечам зажигания с определенным углом опережения зажигания.

Как только обороты коленвала увеличиваются, возрастают и обороты вала прерывателя-распределителя, вследствие чего грузики центробежного регулятора начинают расходиться, перемещая подвижную пластину вместе с кулачками прерывателя. Это приводит к тому, что размыкание контактов происходит несколько раньше, из-за чего увеличивается угол опережения зажигания. С уменьшением оборотов коленвала угол опережения зажигания тоже уменьшается.

Более модернизированным типом контактной системы является ее контактно-транзисторный вариант. Он отличается наличием транзисторного коммутатора в цепи первичной обмотки катушки, управление которым выполняется посредством контактов прерывателя. За счет его использования удалось добиться снижения силы тока в цепи первичной обмотки, что положительно сказалось на длительности эксплуатации контактов прерывателя.

Источник: https://somanyhorses.ru/kak-ustroena-sistema-zazhiganiya-v-avtomobile/

Система зажигания:описание,принцип работы,устройство,фото,видео

Как работает система зажигания автомобиля?

Главной функцией системы зажигания в бензиновом двигателе, является подача искры на свечи зажигания во время определенного такта его работы. Система зажигания дизельного двигателя устроена по-другому, оно происходит момент, когда топливо впрыскивается в такт сжатия.

Система зажигания

Система зажигания автомобиля — это достаточно сложная совокупность приборов, отвечающая за появление искры в тот момент, который соответствует режиму работы силовой установки. Данная система является частью электрооборудования. Самые первые двигатели, такие как агрегат Даймлера, в качестве системы для зажигания применяли калильную головку – это первое устройство системы зажигания, которое не лишено было недостатков. Их суть заключалась в том, что воспламенение осуществлялось в самом конце такта, так как камера раскалялась до достаточно высокой температуры.

Перед стартом всегда нужно было прогреть саму калильную головку и только потом запускать двигатель. В дальнейшем головка разогревалась за счет поддержания температуры от сгораемого топлива.

В современных условиях такой принцип системы зажигания может использоваться только в микродвигателях, применяемых в моделях авто и прочей техники, используемой ДВС. Такое исполнение позволяет уменьшить габаритные размеры, но при этом вся конструкция может быть дороже.

В небольших моделях это малозаметно, а вот в полноразмерном автомобиле может очень сильно сказаться на цене. Во всех авто схема системы зажигания практически одинаковая. Некоторые отличия диктуются только видом исполнения.

Виды систем зажигания

В зависимости от того, как происходит процесс образования искры, выделяют несколько систем: бесконтактная (с участием транзистора), электронная (с помощью микропроцессора) и контактная.

В бесконтактной схеме, для взаимодействия с датчиком импульсов, использован транзисторный коммутатор, выполняющий функцию прерывателя. Высокое напряжение регулирует механический распределитель.

Электронная система зажигания двигателя накапливает и распределяет электрическую энергию с помощью электронного блока управления. Ранее конструктивная особенность этого варианта позволяла электронному блоку отвечать одновременно за систему зажигания и за систему впрыска топлива. Сейчас система зажигания является элементом системы управления двигателем.

В контактной системе электрическая энергия распределяется с помощью механического устройства – прерывателя-распределителя. Дальнейшим ее распространением занимается контактная транзисторная система.

Наиболее характерные неисправности зажигания

Неисправности системы зажигания могут повлечь за собой выход из строя и остальных устройств, используемых для нормальной работы машины. Выделяют отдельный список часто встречаемых неисправностей, при которых затрудняется работа системы воспламенения рабочей смеси: — Возможны замыкания первичной обмотки катушки зажигания на массу, а также замыкание вторичной на первичную. В результате происходит перегорание дополнительного резистора и появляются характерные трещины в изоляторе, а также в крышке катушки.

В этом случае необходима замена поврежденных элементов, если же катушка практически разрушена — то замена всего узла. — Характерные неисправности прерывателя: возможно обгорание либо загрязнение маслом контактов внутри прерывателя; нарушение стандартного зазора между контактами, что приводит к перебоям в переключении между свечами.

Обгорание либо замасливание контактов может вызвать очень резкое увеличение уровня сопротивления между ними, из-за этого уменьшается ток, создаваемый в первичной обмотке, и как результат — снижается мощность искры, которую создают свечи.

Нарушение зазора также приводит к ухудшению образованию искры, которая создается между электродами свечи. Как результат — перебои в нормальной работе двигателя. — Свечи: возможно появление нагара на внутренней поверхности, а также обильное загрязнение снаружи. Нарушение зазора между электродами, различные трещины в изоляторе, неисправность бокового электрода — все это приводит к плохой подаче искры либо вовсе ее отсутствию. Это вызывает нестабильную, неравномерную и неустойчивую работу мотора, снижает его мощность. Возможна и остановка при повышении нагрузки. 

Нормальная работа свечей зажигания возможна только в случае, если: — поверхность резьбы сухая (ни в коем случае не мокрая); — присутствует очень тонкий слой нагара либо копоти; — цвет электродов, а также изолятора должен быть от светло-коричневого до светло-серого, почти белого. Обо всех неисправностях может рассказать мокрая поверхность резьбы — это может быть как бензин, так и масло. У неисправной свечи электроды и часть изолятора покрыты толстым слоем нагара и мокрые. 

Замасленные свечи и другие признаки неисправности

Если двигатель обладает очень большим пробегом, и при этом все свечи были заменены в одно и то же время, то главной виной такого состояния является повышенный износ цилиндров, колец или поршней. Возможно появление масла на поверхности свечи в период, когда автомобиль проходит обкатку. Это со временем проходит.

Если же масло было обнаружено только на одной свече, то причиной этого, скорее всего, может быть неисправность выпускного клапана, он может прогореть. Чтобы это определить, нужно хорошо прислушаться к работе двигателя, на холостом ходу он работает неравномерно. В этом случае нельзя откладывать с проведением ремонтных работ, так как потом прогорит и седло, и ремонт будет еще дороже.

Выгоревшие либо очень сильно корродированные электроды говорят только о перегреве свечи. Такое возможно, если был использован низкооктановый бензин, либо была неправильная установка момента произведения зажигания.

Слишком обедненная смесь — тоже результат оплавки электродов. Возможны различные механические повреждения на поверхности свечи. Она может иметь изогнутый вид, или же будет деформирован электрод, расположенный в боковой части свечи. Последствия такой работы — перебои в зажигании. Причиной возникновения таких неприятностей может быть неправильно выбранная длина свечи, либо же длина резьбы не соответствует посадочному месту в головке мотора. В таком случае стоит подобрать стандартную свечу, рекомендуемую заводом-изготовителем.

Если ее длина была выбрана правильно, стоит обратить внимание на присутствие посторонних механических элементов во внутренней части цилиндра. После того как свечи были поменяны местами, можно узнать очень большое количество информации об их состоянии. Если свеча продолжает покрываться нагаром уже в другом цилиндре — это говорит о её неисправности.

Но если нормальная и исправная свеча одного из соседних цилиндров также начинает покрываться нагаром, как и её предшественница, тогда это неисправность непосредственно в кривошипно-шатунном устройстве этого цилиндра.

Выводы

Все системы, используемые для воспламенения топливной смеси, хороши в определенных областях машиностроения. Все не лишены своих недостатков. Не всегда нужно создавать сложную и высоконадежную систему, иногда гораздо дешевле использовать простые и более дешевые. Нет необходимости устанавливать дорогую систему зажигания на автомобиль, который по своей стоимости гораздо ниже, чем остальные в его классе. Такими действиями можно только поднять его стоимость, но качество, к сожалению, останется прежним. Зачем что-то менять, если работа системы зажигания показала только лучшие результаты на многих тестах?

Источник: https://seite1.ru/zapchasti/sistema-zazhiganiyaopisanieprincip-rabotyustrojstvofotovideo/.html

Контактная система зажигания: полное описания принципа работы

Как работает система зажигания автомобиля?

Система зажигания бензинового двигателя предназначена для воспламенения воздушно-топливной смеси. Возгорание этой смеси происходит благодаря искре.

В зависимости от того каким способом происходит управления процессом, систему зажигания разделяют на 3 типа:

  • контактная,
  • бесконтактная,
  • электронная.

В контактной системе управление накапливанием и распределением искры по цилиндрам осуществляется устройством механического типа — прерыватель-распределитель (трамблер).

В бесконтактной системе зажигания такую функцию выполняет транзисторный коммутатор.

При электронной системе зажигания распределением электрической энергии управляет электронный блок управления (ЭБУ).

Схема контактной системы зажигания

  • Замок зажигания. Замок зажигания обычно располагается на рулевой колонке или панели управления. Он контролирует протекание тока между аккумулятором и системой зажигания.
  • Аккумулятор. Когда двигатель не работает, источником электричества является аккумулятор. Он также дополняет электричество, вырабатываемое генератором,если тот выдает менее 12 вольт.
  • Распределитель. Распределитель направляет поток тока высокого напряжения от катушки через ручку распределителя зажигания по очереди к каждой из свечей зажигания.
  • Конденсатор. На корпусе распределителя зажигания крепится устройство под названием конденсатор. Оно обеспечивает отсутствие искры между разомкнутыми контактами прерывателя, что привело бы к обгоранию поверхности контактов.
  • Свеча зажигания. Ток высокого напряжения проходит по центральному электроду свечи. Затем, в зазоре между центральным и боковым электродами образуется искра, поджигающая топливную смесь в цилиндре.
  • Привод. Обычно распределитель приводится напрямую от распредвала. Скорость его вращения составляет 1/2 скорости вращения коленвала.
  • Катушка. Катушка состоит из металлического корпуса, в котором находятся 2 изолированных обмоточных провода, намотанных на сердечник из мягкой стали. Сжатие магнитных полей вокруг первичной обмотки создает во вторичной обмотке ток высокого напряжения, который через распределитель идет к свечам зажигания.

Принцип работы контактной системы зажигания

Принцип работы контактной системы заключается в осуществлении сбора и преобразования катушкой зажигания низкого напряжения (12V) электросети авто у высокое напряжение (до 30 тыс.вольт), после чего осуществлять передачу и распределение напряжения к свечам зажигания, дабы в нужный момент создать искрообразование на свече. Перераспределение большого напряжения по цилиндрам производится через контакты.

Механическим прерывателем осуществляется непосредственное управление процессом накопления энергии (первичного контура) и замыкание/размыкание питания первичной обмотки.

Таким образом, суть работы контактной системы заключается в следующих этапах:

  1. Когда водитель поворачивает ключ в замке зажигания, ток низкого напряжения АКБ поступает на первичную обмотку катушки зажигания.
  2. Появившийся на первичной обмотке ток, образовывает магнитное поле.
  3. За счет того, что проворачивается двигатель (первоначально от стартера) контакты кулачкового прерывателя периодически размыкаются.
  4. В момент размыкания цепи первичной обмотки, исчезает и магнитное поле, но за счет силовых линий, пересекающих витки первичной и вторичной обмоток, во вторичной обмотке индуцируется ток высокого напряжения, а в первичной явление самоиндукции (напряжение не более 300 вольт).
  5. Образовавшийся импульс тока высокого напряжения поступает на крышку распределителя.
  6. Где за счет контактов происходит распределение тока на каждую свечу зажигания.
  7. Искровой разряд между электродами свечи, воспламеняет топливно-воздушную смесь в цилиндре двигателя.

Использование такого вида зажигания осуществляется на классических отечественных авто и некоторых старых иномарках.

Ток самоиндукции появляется не только на вторичной, но и на первичной обмотке, что приводит к обгоранию контактов и искрению.

Возможные причины:

  • плохой контакт или его обрыв в цепи низкого напряжения;
  • недостаточный зазор между контактами прерывателя (обгорают);
  • выход из строя катушки зажигания, конденсатора, крышки распределителя (трещины или обгорание), пробой ВВ проводов или самих свечей.

Методы устранения поломки:

  • проверка цепей высокого и низкого напряжения;
  • регулирование зазора контактов прерывателя;
  • произведение замены неисправных элементов системы зажигания.

2. Двигатель работает с перебоями

Возможные причины:

  • выход из строя свечи;
  • нарушение зазора между электродами свечи или в контактах прерывателя;
  • повреждена крышка распределителя или его ротор;
  • неправильно установлен или сбился угол опережения зажигания.

Методы устранения поломки:

  • проверка и регулировка угла зажигания;
  • замена неисправных элементов;
  • установка требуемых зазоров на свечи и контактах прерывателя.

на наш канал в Яндекс.Дзене

Еще больше полезных советов в удобном формате

Подписаться

Смотрите также

Не нашли ответ на свой вопрос?

Источник: https://etlib.ru/blog/146-kontaktnaya-sistema-zazhiganiya

Системы зажигания автомобиля

Как работает система зажигания автомобиля?

Автомобильный мотор еще в первых своих модификациях представлял собой сложную конструкцию, состоящую из ряда систем, работающих воедино. Одним из основных компонентов любого бензинового мотора является система зажигания. Об ее устройстве, разновидностях и особенностях мы сегодня и поговорим.

Классификация систем зажигания

Основываясь на методе синхронизации зажигания, различают схемы контактные и бесконтактные. По технологии формирования угла опережения зажигания можно выделить системы с механической регулировкой и полностью автоматические или электронные.

Исходя из типа накопления заряда, для пробития искрового промежутка, рассматривают устройства с накоплением в индуктивности и с накоплением в емкости. По способу коммутации первичной цепи катушки бывают – механические, тиристорные и транзисторные разновидности.

Узлы систем зажигания

Все существующие виды систем зажигания различаются способом создания контролирующего импульса, в остальном их устройство практически не отличается. Поэтому можно указать общие элементы, которые являются неотъемлемой частью любой вариации системы.

Питание – первичным, служит аккумулятор (задействуется при пуске), а при работе – эксплуатируется напряжение, которое производит генератор.

Выключатель – устройство, которое необходимо для подачи питания на всю систему или его отключения. Выключателем служит замок зажигания или управляющий блок.

Накопитель заряда – элемент необходимый для концентрации энергии в нужном объеме, для воспламенения смеси. Существует два типа компонентов для накопления:

  • Индуктивный – катушка, внутри которой расположился повышающий трансформатор который создает достаточный импульс для качественного поджога. Первичная обмотка устройства питается от плюса батареи и приходит через прерыватель к ее минусу. При размыкании первичного контура прерывателем на вторичном создается высоковольтный заряд, который и передается на свечу.
  • Емкостный – конденсатор, который заряжается повышенным напряжением. В нужное время накопленный заряд по сигналу передается на катушку.

Схема работы в зависимости от вида накопления энергии

Свечи – изделие, состоящее из изолятора (основа свечи), контактного вывода для подключения высоковольтного провода, металлической оправы для крепления детали и двух электродов, между которыми и образуется искра.

Система распределения – подсистема, предназначенная для направления искры на нужный цилиндр. Состоит из нескольких компонентов:

  • Распределитель или трамблер – устройство, сопоставляющее обороты коленвала и соответственно – рабочее положение цилиндров с кулачковым механизмом. Компонент может быть механическим или электронным. Первый – передает вращение мотора и посредством специального бегунка распределяет напряжение от накопителя. Второй (статический) исключает наличие вращающихся частей, распределение происходит благодаря работе блока управления.
  • Коммутатор – прибор, генерирующий импульсы заряда катушки. Деталь присоединяется к первичной обмотке и разрывает питание, генерируя напряжение самоиндукции.
  • Блок управления – устройство на микропроцессорах, определяющее момент передачи тока в катушку на основании показаний датчиков.

Провод – одножильный высоковольтный проводник в изоляции, соединяющий катушку с распределителем, а также контакты коммутатора со свечами.

Магнето

Одной из первых систем зажигания является – магнето. Она состоит из генератора тока, который создает разряд исключительно для искрообразования. Состоит система из постоянного магнита, который приводится в движение коленчатым валом и катушки индуктивности. Искру, способную пробить искровой промежуток генерирует повышающий трансформатор, одной частью которого служит грубая обмотка катушки индуктивности. Для повышения напряжения используют часть обмотки генератора, которая соединена с электродом свечи.

Система зажигания с магнето

Контроль за подачей искры может быть контактный, выполненный в виде прерывателя или бесконтактный. При бесконтактном методе подачи искры применяются конденсаторы, которые улучшают качество искры. В отличие от представленных далее схем зажигания, магнето не требуется аккумулятор, оно легкое и активно применяется в компактной технике – мотокосах, бензопилах, генераторах и т.д.

Контактная система зажигания

Устаревшая, распространенная схема воспламенения топливной смеси. Отличительной особенностью системы является создание высокого напряжения, вплоть до 30 тысяч В на свечи. Создает такое высокое напряжение катушка, которая соединена с распределительным механизмом.

Импульс на катушку передается благодаря специальным проводам, соединенным с контактной группой. При размыкании кулачков происходит формирование разряда и искры. Устройство также выполняет роль синхронизатора, так как момент образования искры должен совпадать с нужным моментом такта сжатия.

Данный параметр устанавливается посредством механической регулировки и сдвига искры на более раннюю или позднюю точку.

Простейшая схема

Уязвимой частью такого варианта является естественный механический износ. Из-за него меняется момент образования искры, он нестабильный для различных положений бегунка. Ввиду чего появляются вибрации мотора, падает его динамика, ухудшается равномерность работы. Тонкие настройки позволяют избавиться от явных неисправностей, но проблема может возникнуть повторно.

Преимуществом контактного зажигания является его надежность. Даже при серьезном износе деталь будет работать безотказно, позволяя мотору работать. Схема не прихотлива к температурным режимам, практически не боится влаги или воды. Такой вид зажигания распространен на старых автомобилях и по сей день используется на ряде серийных моделей.

Бесконтактное зажигание

Принципиальная схема работы бесконтактной системы несколько отличается. Она сохраняет трамблер, как элемент конструкции, но он лишь выполняет функцию синхронизации цилиндров и отсылает импульс на коммутатор. В свою очередь транзисторный элемент, синхронизируется с показателем датчика и определяет угол зажигания, а также другие настройки – автоматически.

Преимущество системы – стабильность качества искрообразования, которое не зависит от ручных настроек или сохранности поверхности контактов. Если рассматривать превосходство данного варианта над контактной схемой, можно выделить:

  • система генерирует искру высокого качества постоянно;
  • устройство системы зажигания исключает ухудшение ее работы вследствие износа или загрязнения;
  • отсутствует необходимость производить тонкие настройки угла зажигания;
  • не приходится следить за состоянием контактов, контролировать их угол замыкания и другие настройки.

В результате использования бесконтактной системы можно наблюдать снижение расхода топлива, улучшение динамических характеристик, отсутствие сильных вибраций мотора, стабильная искра позволяет облегчить холодный пуск.

Электронное зажигание

Современная, наиболее совершенная схема, которая полностью исключает наличие подвижных частей. Для получения необходимых данных о положении коленвала и других применяются специальные датчики. Далее электронный блок управления производит расчеты и посылает соответствующие импульсы на рабочие компоненты. Такой подход позволяет максимально точно определить момент подачи искры, благодаря чему смесь разжигается своевременно. Это позволяет получить больше мощности, улучшить продувку цилиндра и снизить вредные выбросы, благодаря лучшему дожигу топлива.

Схема электронной системы

Электронная система зажигания автомобиля отличается высокой стабильностью работы и устанавливается на большинство современных авто. Такая популярность определена преимуществами данной схемы:

  • Снижение расхода топлива во всех режимах работы мотора.
  • Улучшение динамических показателей – отклик на педаль газа, скорость разгона и т.д.
  • Более плавная работа мотора.
  • Выравнивается график момента и лошадиных сил.
  • Минимизируются потери мощности на низких оборотах.
  • Совместима с газобаллонным оборудованием.
  • Программируемый электронный блок позволяет настроить двигатель на экономию топлива или наоборот, на повышение динамических показателей.

Назначение системы зажигания достаточно простое, она является неотъемлемой частью бензинового двигателя, а также моторов, оснащенных ГБО. Этот компонент постоянно меняется и приобретает новые формы, соответствующие современным требованиям. Несмотря на это даже самые простые модели зажигания все еще используются на различной технике, успешно выполняя свою работу, как и десятки лет назад.

Источник: http://autoleek.ru/sistemy-dvigatelja/sistema-zazhiganiya/sistemy-zazhiganiya-avtomobilya.html

Система зажигания автомобиля: предназначения, устройство, принцип работы —

Как работает система зажигания автомобиля?

Система зажигания авто предопределена для создания искрового разряда, распределения его по свечам зажигания и все это в подходящий момент работы мотора. В определенных моделях авто импульсы системы поступают на блок управления с помощью погружного топливного насоса. В дизельных моторах зажигание случается во время впрыска топливной смеси при такте сжатия.

Система зажигания бывает трех типов:

  • Контактная. Появление импульсов осуществляется в тот миг, когда контакты находятся в стадии разрыва.
  • Бесконтактная. Появлению импульсов способствует коммутатор (генератор импульсов).
  • Микропроцессорная. Механизм представляет собой электронный прибор, управляющий моментом воспламенения искры, а также и другими системами транспортного средства.

В двухтактных силовых агрегатах, для работы которых не нужен внешний источник питания, устанавливают системы от магнето. Магнето – это самостоятельное устройство, которое объединяет источник тока и катушку зажигания.

Все эти системы используют единый принцип для своей работы, а отличаются лишь методом образования управляющего импульса.

Строение системы зажигания:

  1. Источник питания. Во время запуска двигателя машины источником питания служит аккумулятор, а во время его эксплуатации – генератор авто.
  2. Замок зажигания – приспособление, благодаря которому осуществляется передача напряжения. Выключатель (замок зажигания) есть механический либо электрический.
  3. Накопитель энергии. Это устройство, главная роль которого в накоплении и преобразовании энергии в достаточном количестве для образования разряда меж электродами свечки зажигания. В устройстве современных автомобилей применяются такие накопители: емкостные, индуктивные.

    Первый вид накопителя представлен в виде емкости, использующей высокое напряжение для накапливания заряда, который в виде энергии поступает в определенное время на свечку. Второй вид накопителя, то есть накопитель индуктивный имеет вид катушки зажигания. Сначала первичная обмотка подсоединяется к плюсовому полюсу, а через прибор разрыва – к минусовому. Работающее устройство разрыва способствует появлению напряжения самоиндукции в обмотке. Относительно вторичной обмотки, то в ней появляется напряжение в количестве достаточном для того чтобы пробить воздушный зазор свечки.

  4. Свечки зажигания.

    Каждая свеча – это приспособление в виде изолятора из фарфора, накрученного на металлическую резьбу и имеющего два электрода, расположенные в интервале от 0,15 до 0,25 мм один от другого. Первым электродом является центральный проводник, а вторым – резьба металлическая.

  1. Система распределения зажигания. Предназначение системы – снабжение в необходимое мгновение энергией свечки зажигания. Она состоит из: распределителя (коммутатора), а также блока управления.

Распределитель зажигания  – это приспособление, распределяющее высокое напряжение по электропроводам, подсоединенным к свечкам цилиндра. Этот процесс может иметь статическую или механическую природу. Статический распределитель не имеет в своей конструкции вращающихся деталей. В этом случае катушка зажигания прикрепляется прямо к свечке, а управление процессом осуществляется не чем иным как блоком управления зажиганием. Силовой агрегат, имеющий четыре цилиндра, будет иметь в своей конструкции и 4 катушки. Высоковольтные провода в этой системе не применяются.

Что касается механического распределителя зажигания, то это устройство представлено в виде вала, запуск которого осуществляется при запуске двигателя, а распространение напряжения по проводам осуществляется с помощью специального «бегунка».

Коммутатор – это электронное приспособление, которое применяется для создания импульсов, приводящих в действие автотрансформатор (катушку).

Блок управления системой зажигания существует в виде микропроцессорного механизма, который устанавливает тот момент, когда нужно подать импульс в катушку. При этом учитываются показатели лямбда-зондов, коленвала, распредвала, температурные показатели.

Особенность функционирования

Система зажигания классическая функционирует следующим образом. Кулачки, активировавшиеся с помощью обращения вала привода трамблера, создают «разрыв», передаваемый на первичную обмотку авторансформатора заряд в размере 12 вольт.

После исчезновения напряжения в обмотке образовывается ЭДС самоиндукции, а в обмотке вторичной зарождается напряжение в размере около 30 тысяч вольт. Далее высокое напряжение появляется в распределителе, а потом расходится на свечки в том количестве, которое требуется во время периода работы силового агрегата.

В этом случае такого напряжения вполне достаточно для того чтобы пробить искровым зарядом зазор воздуха между электродами свечек зажигания.

Для полного перегорания топлива необходим процесс опережения зажигания. Учитывая то, что топливная смесь перегорает не сразу, ее нужно зажечь немного заранее. Миг подачи искры должен быть четко отрегулирован, ведь в случае несвоевременного зажигания может иметь место потеря мощности двигателя, повышенная детонация.

Источник: https://qvarto.ru/sistema-zazhiganiya-avtomobilya-prednaznacheniya-ustrojstvo-princip-raboty/

Бесконтактная система зажигания

Как работает система зажигания автомобиля?

Одной из серьезных инноваций в автомобилестроении стало внедрение бес­кон­такт­ной системы зажигания. Данное техническое новшество позволяет не только поднять мощность двигателя, но и значительно снизить расход топлива, кроме того при ис­поль­зо­ва­нии бесконтактной системы зажигания существенно снижается выброс вредных веществ в атмосферу, поскольку при напряжении разряда в 3000В топливная смесь сгорает более качественно.

По сути, система зажигания двигателя отвечает за возникновение искры, которая приводит к воспламенению топливной смеси, причем, чем точнее происходит воз­ник­но­ве­ние искры, тем более высокую мощность имеет двигатель автомобиля. Таким образом, совершенно очевидно, что правильность выс­тав­ле­ния зажигания является определяющим фактором в экономичности и экологической чистоте автомобильного двигателя.

К сожалению, контактная система зажигания не оправдала надежды конструкторов. Как ни старались инженеры, но так и не смогли добиться увеличения количества энергии в искре, и этот параметр оказался особенно критичным при эксплуатации новых двигателей с высокой компрессией и значением оборотов.

К тому же из-за механической работы эле­мен­ты контактной системы постоянно изнашиваются, а это делает практически невозможным высокоточную регулировку зажигания и определения оптимального момента для вос­пла­ме­не­ния смеси.

Как следствие у двигателя возможны перебои в работе, повышенный расход топлива и чрезмерный выброс продуктов сгорания в окружающую среду.

На сегодняшний день уровень развития электроники позволил создать систему, которая может генерировать искру без помощи контактов, и это дало шанс решить раз и навсегда проблему физического износа и технического обслуживания системы зажигания. Выставленное один раз зажигание работает без сбоев в течение всего срока службы ав­то­мо­би­ля.

Фактически бесконтактная система зажигания представляет собой работающие совместно контактно-транзисторную систему зажигания, способную к накоплению энергии индуктивности, а также работающего датчика Холла.

Благодаря тому, что эти системы недорогие в производстве, сегодня бесконтактная система зажигания применяется не только в автомобилях с мощным двигателем, но и в автомобилях, имеющих малый объем.

Преимущества бесконтактной системы зажигания

Самым главным преимуществом бесконтактной системы зажигания по сравнению с контактной является подача куда большей энергии на свечу зажигания, благодаря чему существенно увеличивается искра, столь необходимая для сгорания топлива. Таким образом, улучшается сгорание топливовоздушной смеси, что ска­зы­ва­ет­ся на маневренности автомобиля.

Не менее важным является и то, что форма и стабильность импульсов на всех ди­а­па­зо­нах работы двигателя существенно улучшается. Это достигается тем, что используют датчик Холла, который нужен для электромагнитного формирователя импульсов. Данный датчик собственно и заменяет контактную систему зажигания. Таким образом, достигается не только улучшенная мощность и приемистость двигателя, но также снижается расход топ­ли­ва. Экономичность в этом случае может достигать 1 л на 100 километров.

Третьим достоинством и преимуществом бесконтактной системы зажигания является ее неприхотливость и низкая потребность в техническом обслуживании. Ее надо настроить один раз и все. В то же время контактная система требовательна к техническому об­слу­жи­ва­нию, поскольку требует постоянной регулировки, а также смазывания вала трамблера через каждые 10 000 километров.

Схема бесконтактного зажигания не так сильно отличается от контактного. В част­нос­ти, как мы уже говорили, отличия составляет датчик импульсов, а также транзисторный коммутатор.

Устройство бесконтактной системы зажигания

По конструктивным особенностям устройство бесконтактной системы зажигания мало чем отличается от ее контактного аналога. Существенным изменением является на­ли­чие транзисторного коммутаторного блока, а также датчика Холла.

Работа датчика импульсов заключается в генерации импульсов с низким значением напряжения. Технически данную функцию могут выполнять оптический, индуктивный и так называемый датчик Холла. Именно датчик Холла нашел массовое применение в бес­кон­такт­ных системах зажигания.

Датчик Холла получил свое название в честь заложенного в основу его работы эффекта Холла (появление напряжения в пластинке под действием магнитного поля). Данный датчик состоит из магнита, стального экрана и пластины, из­го­тов­лен­ной из полупроводника, в которую вставлена микросхема.

Датчик Холла, как правило, ус­та­нав­ли­ва­ет­ся на распределителе и имеет название система «датчик-распределитель». К датчику конструктивно подведен привод от коленчатого вала. Датчик Холла выполняет функцию «прерыватель–распределитель».

Работа транзисторного коммутатора заключается в прерывании тока в первичной об­мот­ке катушки зажигания двигателя, причем это прерывание происходит исключительно в соответствии с импульсами, поступающими от датчика Холла. Такая работа возможна бла­го­да­ря отпирающей и запирающей способности транзистора на выходе.

Работа бесконтактной системы зажигания

Сам принцип работы бес­кон­такт­ной системы зажигания заключается в том, что при вклю­чен­ном зажигании и поступающей от коленчатого вала информации о его количестве оборотов, датчик Холла выдает определенные им­пуль­сы на коммутатор.

В ответ на это на коммутаторе происходит преобразование импульсов в пре­ры­вис­тые импульсы в катушке за­жи­га­ния (а точнее в ее первичной обмотке).

Как следствие из-за пре­ры­ва­ния тока в катушке (а точнее на ее вторичной обмотке) воз­ни­ка­ет ток высокого напряжения, ко­то­рый по проводу и угольному кон­так­ту попадает на пластину ротора и уже оттуда через клемму, на­хо­дя­щу­ю­ся в распределителе, по про­во­ду попадает на со­от­ветст­ву­ю­щую свечу двигателя и поджигает топ­лив­ную смесь в цилиндре дви­га­те­ля.

Надежность работы бесконтактной системы зажигания обуславливается тем, что в ней отсутствуют подвижные контакты и их не надо постоянно чистить и регулировать. Данная система обеспечивает надежный запуск, а также хорошую работу при разгоне автомобиля вследствие выработки энергии с большим значением напряжения разряда искры, а это ведет к полному сжиганию топливной смеси, причем независимо от частоты вращения коленчатого вала.

Кроме того бесконтактная система не чувствительна к биению или вибрации ротора-распределителя, искра в любом случае равномерна. Очень важно то, что бесконтактная система позволяет устанавливать так называемый угол опережения зажигания, в каждой модели двигателей этот угол имеет индивидуальное значение и колеблется в пределах 0-10°.

Суть понятия угла опережения заключается в том, что топливная смесь не сгорает мгновенно, для этого нужно время для своевременного сгорания топлива, определяется угол поднятия кривошипного механизма коленвала, при котором возникает искра, причем этот угол рассчитывается как разница реального угла подъема механизма с верхней мертвой точкой.

Таким образом, смесь сгорает полностью тогда, когда кривошипно-шатунный механизм двигает поршень на 10-15° после прохождения ВМТ, то есть смесь сгорает в самом начале рабочего хода. Вот почему нужно опережение в возникновении искры, и бесконтактная система позволяет выставить этот угол опережения с максимальной точностью.

Если же искра в цилиндре возникнет слишком рано, газы, возникающие при сгорании топлива, препятствуют прохождению поршнем ВМТ, а это повышает расход топлива да и мощность двигателя снижает. Работая с такой нагрузкой, двигатель начинает греться, в нем появляется стук, а также на холостом ходу двигатель работает с перебоями. При увеличении частоты оборотов коленвала нагрузка на двигатель уменьшается и угол опережения должен увеличиваться, а при падении оборотов коленвала угол должен уменьшаться. Бесконтактная система зажигания в автоматическом режиме управляет этим важным в работе двигателя значением.

Работа бесконтактной системы зажигания

Датчик Холла

На самом деле в технической литературе используется официальное название датчика Холла как «Датчик положения на эффекте Холла». Принцип работы датчика Холла базируется на особенностях поведения проводника с протекающим по нему постоянным током в магнитном поле. Вследствие помещения проводника в это поле возникает разность потенциалов в поперечной плоскости. Данный эффект еще называют холловским нап­ря­же­ни­ем. Используя это свойство, конструкторами созданы датчики, причем, с учетом сов­ре­мен­ных технологий. Датчики Холла подразделяют на аналоговые (более ранняя модель) и цифровые (более современные).

Цифровые датчики Холла сигнализируют о наличии или отсутствии магнитного поля. Датчик Холла реагирует на присутствие или отсутствие определенного значения магнитной индукции. Таким образом, низкие значения магнитной индукции могут быть не зафиксированы датчиком Холла.

На самом деле это не является критичной проблемой; более существенным минусом цифровых датчиков Холла становится наличие у них не­чувст­ви­тель­ных зон между порогами. По принципу работы цифровые датчики Холла можно разделить на униполярные и биполярные. Первые включаются и отключаются при изменениях значения магнитного поля.

Биполярные датчики Холла чувствительны к из­ме­не­ни­ям полярности самого магнитного поля. Это значит, что при одной полярности датчик Холла включен, а при другом значении полярности выключен.

Аналоговые датчики Холла попросту способны преобразовывать индукцию в напряжение, соответственно, на измерительной шкале будут располагаться со­от­ветст­ву­ю­щие единицы напряжения, значение которых будет зависеть от полярности и силы поля.

В современном автомобилестроении датчики Холла нашли широкое применение. С их помощью удается точно измерять угол, под которым находится распредвал и коленчатый вал (а это очень важно); во многих автомобилях (особенно устаревших моделях) датчики Холла используются для определения момента образования искры. Исходя из этого, для автомобилистов определение эффекта Холла можно сформулировать следующим образом: если пропустить ток через клемму «а», изготовленную из полупроводникового материала и помещенную в магнитное поле, то на клеммах «б», расположенных по бокам от клеммы «а», появится напряжение.

Однако физик Холл, наверное, не сразу узнал бы суть своего открытия в такой трактовке. Работая в университете Балтимора, Холл стал свидетелем любопытного фи­зи­чес­ко­го явления.

Оказывается, если взять плоскую прямоугольную пластинку из по­лу­про­вод­ни­ко­во­го материала и подвести к узким граням ток, то на широких гранях возникает напряжение, которое варьирует в диапазоне от десятков микровольт до сотен милливольт. Долгих 75 лет (до 1954 года) данное явление демонстрировалось как занимательный опыт и не более.

Все кардинально изменилось после начала промышленного производства полупроводниковых пленок, свойства которых можно было предсказать заранее. Это дало возможность создать миниатюрный датчик, включающий в себя магнит и микросхему. Создатели данного устройства отметили сразу несколько сильных сторон своего детища:

  • Компактные размеры;
  • При любых оборотах двигателя автомобиля величина измерения не меняется, а это крайне важно для нормальной работы прибора;
  • Информация от датчика Холла поступает в виде неких постоянных величин без ко­ле­ба­ний и всплесков (у специалистов такой поток информации называют информацией прямоугольной формы), что немаловажно для создания стабильной системы уп­рав­ле­ния

Но совершенного в этом мире нет ничего. У датчиков Холла есть кроме достоинств и недостатки, главным из которых является его чувствительность к помехам, особенно элект­ро­маг­нит­ным, а они постоянно возникают при работе электрической цепи. Кроме того датчик Холла дороже магнитоэлектрического датчика, но на нынешнем этапе развития технологий производства благодаря масштабам данная ценовая разница практически све­де­на к нулю.

Принципиальная схема работы датчика Холла следующая. Двигаясь, лопасть ротора, изготовленная из металла, проходит через зазор. В этот момент магнитный поток начинает идти в обход (шунтируется), а, следовательно, на микросхеме индукция нулевая. В то же время сигнал на выходе имеет высокое значение относительно «массы» и имеет значение практически равное значению питания.

Проверку датчиков Холла следует проводить на осциллографе. Однако можно выполнить проверку и в «полевых» условиях, то есть не снимая, прямо в автомобиле. Алгоритм проверки:

  • Выключить зажигание (в противном случае датчик попросту выйдет из строя);
  • Собрать схему (смотри рисунок);
  • Светодиод должен гаснуть, а затем загораться по мере движения магнита;
  • Категорически запрещено проверять датчик Холла при помощи контрольной лампы, это ведет к выходу из строя датчика

Источник: https://zen.yandex.ru/media/id/5ac71a697ddde81950d12c51/5ac7344d830905dc741f17f1

Как устроена система зажигания, её назначение и принцип действия

Как работает система зажигания автомобиля?

Система зажигания устанавливается на бензиновые двигатели. Ее главная задача – воспламенить топливно-воздушную смесь в тот момент, когда поршень находится в верхнем положении, максимально сжимая ее. Бензин в цилиндре двигателя воспламеняется с искрой, которая возникает в специальной свече, в чем и состоит назначение системы зажигания в автомобиле.

Общие сведения о системе зажигания

При такте сжатия поршень двигается вверх, повышая давление воздушно-топливной смеси, поступающей в цилиндр через впускной клапан. Как только он доходит до мертвой точки, между электродами свечи проскакивает электрическая искра, которая и воспламенит горючую смесь. Чтобы бензиновые пары гарантированно воспламенились, длина искры должна быть не менее 1 мм, именно такой зазор должен быть между центральным и боковым электродом свечи.

Чтобы получить такую искру, напряжение или разница потенциалов между свечными электродами должна быть не менее 20 кВ. При этом аккумуляторная батарея выдает напряжение в 12 В, поэтому устройство системы зажигания должно позволять трансформировать высокие напряжения, чтобы получить нужную длину искры. Важно, что искра должна проскакивать именно в нужный момент, когда поршень находится в верхней точке.

Работа системы зажигания

Для получения тока высокого напряжения применяется специальная катушка, которая называется модуль зажигания. Она получает информацию от электронного блока управления или «мозгов», подавая ток высокого напряжения  на свечу точно в нужный момент.

Команду на подачу искры в рабочий цилиндр подает датчик положения коленчатого вала, который располагается возле задающего диска, закрепленного на конце коленвала. На этом диске нет одного зубчика, что является меткой для датчика. При подходе этой метки к датчику, она подает сигнал ЭБУ, что поршень находится в верхней точке и можно подавать разряд на свечу зажигания.

Поэтому при выходе из строя датчика коленчатого вала автомобиль не заводится, поскольку непонятно, в каком положении находится поршень. В случае такой поломки придется вызывать эвакуатор и доставлять автомобиль на СТО, своим ходом он туда не доберется.

Проблемы с зажиганием

Основная проблема любой системы зажигания — отсутствие разряда в камере сгорания из-за поломки свечей. Это приводит к отключению одного или нескольких цилиндров. Чтобы этого не случилось, свечи требуется менять каждые 30-40 тыс. км пробега. На старых автомобилях отечественного производства это можно сделать самостоятельно. Более современные модели требуют специального ключа, поэтому данную операцию лучше делать на СТО.

Источник: https://topmekhanik.ru/printsip-raboty-sistemy-zazhiganiya/

Autoline-eu.ru
Добавить комментарий